Устройство и принцип работы жесткого диска. Компьютерная помощь Из чего изготавливается основа жесткого диска

💖 Нравится? Поделись с друзьями ссылкой

Если же Вы - частное лицо, то наши специалисты смогут оказать широчайший спектр компьютерных услуг . Наши опытные мастера готовы решить любую проблему, которая может возникнуть с Вашим системным блоком или ноутбуком.

Звоните:

В качестве оказываемых нами компьютерных услуг Вы можете не сомневаться , ведь у нас работают опытные и внимательные мастера, которые не первый год оказывают компьютерную помощь и проводят ремонт компьютеров, конечно же, с использованием новейшего профессионального оборудования.

Присоединяйтесь:

Настройка и ремонт компьютеров на дому - вызов компьютерного мастера

  • Установка программного обеспечения

  • Ремонт материнской платы

  • Услуги компьютерной помощи

  • Замена блока питания

Сломался компьютер? Не беда. Наши специалисты знают, чем Вам помочь. Для ремонта компьютеров у нас имеются все необходимые запасные части от сертифицированных производителей. Выезд на дом происходит очень быстро.

Компьютерная помощь на дому 250 руб.

Срочный ремонт ноутбуков - Спасаем от залития жидкостями и замена деталей

  • Замена матрицы

  • Чистка клавиатуры

  • Замена аккумуляторной батареи

  • Ремонт блока питания

Если у Вас сломался ноутбук, то наши опытные мастера быстро его починят. Даже если Вы случайно залили его жидкостью, и в нем сгорела аккумуляторная батарея и жесткий диск, наши мастера быстро вернут Вашему ноутбуку работоспособность.

Срочный ремонт ноутбуков 550 руб.

Удаление и лечение компьютерных вирусов - удаление баннеров

  • Установка антивирусной защиты

  • Лечение вирусов

  • Удаление троянов

  • Настройка файрволла

Ни один компьютер не застрахован от атак вредоносных программ. Коварные вирусы могут сильно нарушать работу компьютера, приводить к потере данных, но наши мастера эффективно удалят вирусы и установят антивирусную защиту.

Удаление вирусов 270 руб.

Установка и настройка windows на компьютер или ноутбук

  • Установка Windows XP, Vista, Seven

  • Настройка Windows

  • Установка драйверов

  • Восстановление системы после сбоя

Если у Вас нет возможности установить операционную систему Windows самостоятельно, просто обратитесь к нашим специалистам, и они установят любую лицензионную версию Windows и произведут все необходимые настройки.

Установка windows 260 руб.

Спасаем Ваши данные - восстановление информации

  • С жесткого диска

  • После форматирования

  • С флешки и карты памяти

  • После удаления

Не зависимо от того, что послужило причиной потери данных, и на каком носителе произошло это неприятное явление, наши квалифицированные мастера восстановят все ваши данные, с сохранением конфиденциальности файлов на компьютере.

Восстановление данных 410 руб.

It-услуги для организаций и абонентское обслуживание организаций

  • Администрирование компьютеров
  • Ремонт периферии
  • Информационная безопасность
  • Настройка сети

Сложно представить себе успешный бизнес без грамотно организованных ИТ-услуг. Ведь от хорошо работающих компьютеров и хорошо организованной системе безопасности данных зависит очень многое. Обращайтесь к нам за it-услугами - мы не подведем.

Во время запуска компьютера, набор микропрограмм, записанных в микросхеме BIOS, производит проверку оборудования. Если все в порядке, он передает управление загрузчику операционной системы. Дальше ОС загружается и вы начинаете пользоваться компьютером. При этом — где до включения компьютера хранилась операционная система? Каким образом ваш реферат, который вы писали всю ночь, остался цел после отключения питания ПК? Снова же — где он хранится?

Ладно, вероятно я слишком загнул и вы все прекрасно знаете, что данные компьютера хранятся на жестком диске. Тем не менее что он из себя представляет и как работает не все знают, и поскольку вы здесь, делаем вывод, что хотели бы узнать. Что же, давайте разбираться!

По традиции, давайте подсмотрим определение жесткого диска в Википедии:

Жесткий диск (винт, винчестер, накопитель на жестких магнитных дисках, НЖМД, HDD, HMDD) — запоминающее устройство произвольного доступа, основанное на принципе магнитной записи.

Используются в подавляющем большинстве компьютеров, а также как отдельно подключаемые устройства для хранения резервных копий данных, в качестве файлового хранилища и т.п.

Чуть-чуть разберемся. Мне нравится термин «накопитель на жестких магнитных дисках «. Эти пять слов передают всю суть. HDD — устройство, предназначение которого длительное время хранить записанные на него данные. Основой HDD являются жесткие (алюминиевые) диски со специальным покрытием, на которое при помощи специальных головок записывается информация.

Не буду рассматривать в деталях сам процесс записи — по сути это физика последних классов школы, и вникать в это, уверен, у вас желания нет, да и статья совсем не о том.

Также обратим внимание на фразу: «произвольного доступа » что, грубо говоря, означает, что мы (компьютер) можем в любое время считать информацию с любого участка ЖД.

Важным является тот факт, что память HDD не энергозависима, то есть не важно подключено питание или нет, записанная на устройство информация никуда не исчезнет. Это важное отличие постоянной памяти компьютера, от временной ().

Взглянув на жесткий диск компьютера в жизни, вы не увидите ни дисков, ни головок, так как все это скрыто в герметичном корпусе (гермозона). Внешне винчестер выглядит так:

Для чего компьютеру нужен жесткий диск

Рассмотрим что такое HDD в компьютере, то есть какую роль он играет в ПК. Понятно, что он хранит данные но, как и какие. Здесь выделим такие функции НЖМД:

  • Хранение ОС, пользовательского ПО и их настроек;
  • Хранение файлов пользователя: музыка, видео, изображения, документы и т.д;
  • Использование части объема жесткого диска, для хранения данных не помещающихся в ОЗУ (файл подкачки) или хранение содержимого оперативной памяти во время использования режима сна;

Как видим, жесткий диск компьютера не просто свалка из фотографий, музыки и видео. На нем хранится вся операционная система, и помимо этого ЖД помогает справляться с загруженностью ОЗУ, беря на себя часть ее функций.

Из чего состоит жесткий диск

Мы частично упоминали о составных жесткого диска, сейчас разберемся с этим детальнее. Итак, основные составляющие HDD:

  • Корпус — защищает механизмы жесткого диска от пыли и влаги. Как правило, является герметичным, дабы внутрь та самая влага и пыль не попадали;
  • Диски (блины) — пластины из определенного сплава металлов, с нанесенным с обеих сторон покрытием, на которое и записываются данные. Количество пластин может быть разным — от одной (в бюджетных вариантах), до нескольких;
  • Двигатель — на шпинделе которого закреплены блины;
  • Блок головок — конструкция из соединенных между собой рычагов (коромысел), и головок. Часть ЖД, которая считывает и записывает на него информацию. Для одного блина используется пара головок, поскольку и верхняя, и нижняя часть у него рабочая;
  • Устройство позиционирования (актуатор ) — механизм приводящий в действие блок головок. Состоит из пары постоянных неодимовых магнитов и катушки, находящейся на конце блока головок;
  • Контроллер — электронная микросхема управляющая работой HDD;
  • Парковочная зона — место внутри винчестера рядом с дисками либо на их внутренней части, куда опускаются (паркуются) головки во время простоя, чтобы не повредить рабочую поверхность блинов.

Такое вот незамысловатое устройство жесткого диска. Сформировалось оно много лет назад, и никаких принципиальных изменений в него уже давно не вносились. А мы идем дальше.

Как работает жесткий диск

После того, как на HDD подается питание двигатель, на шпинделе которого закреплены блины, начинает раскручиваться. Набрав скорость, при которой у поверхности дисков образовывается постоянный поток воздуха, начинают двигаться головки.

Данная последовательность (сначала раскручиваться диски, а затем начинают работать головки) необходима для того, чтобы за счет образовавшегося потока воздуха, головки парили над пластинами. Да, они никогда не касаются поверхности дисков, иначе последние были бы моментально повреждены. Тем не менее, расстояние от поверхности магнитных пластин до головок настолько маленькое (~10 нм), что вы не увидите его невооруженным глазом.

После запуска, в первую очередь происходит считывание служебной информации о состоянии жесткого диска и других необходимых сведениях о нем, находящихся на так называемой нулевой дорожке. Только затем начинается работа с данными.

Информация на жестком диске компьютера записывается на дорожки которые, в свою очередь, разбиты на сектора (такая себе разрезанная на кусочки пицца). Для записи файлов несколько секторов объединяют в кластер, он и является наименьшим местом, куда может быть записан файл.

Кроме такого «горизонтального» разбиения диска, есть еще условное «вертикальное». Поскольку все головки объединены, они всегда позиционируются над одной и той же по номеру дорожкой, каждая над своим диском. Таким образом, во время работы HDD головки как бы рисуют цилиндр:

Пока HDD работает, по сути он выполняет две команды: чтение и запись. Когда необходимо выполнить команду записи, происходит вычисление области на диске куда она будет производится, затем позиционируются головки и, собственно, выполняется команда. Затем результат проверяется. Кроме записи данных прямо на диск, информация также попадает в его кеш.

Если контроллеру поступает команда на чтение, в первую очередь происходит проверка наличия требуемой информации в кеше. Если ее там нет, снова происходит вычисление координат для позиционирования головок, дальше, головки позиционируется и считывают данные.

После завершения работы, когда питание винчестера исчезает, происходит автоматическая парковка головок в парковочных зоне.

Вот так в общих чертах и работает жесткий диск компьютера. В действительности же все намного сложнее, но обычному пользователю, скорее всего, такие подробности не нужны, поэтому закончим с этим разделом и пойдем дальше.

Виды жестких дисков и их производители

На сегодняшний день, на рынке существует фактически три основных производителя жестких дисков: Western Digital (WD), Toshiba, Seagate. Они полностью покрывают спрос на устройства всех видов и требований. Остальные компании либо разорились, либо были поглощены кем-то из основной тройки, или перепрофилировались.

Если говорить о видах HDD, их можно разделить таким образом:

  1. Для ноутбуков — основной параметр — размер устройства в 2,5 дюйма. Это позволяет им компактно размещаться в корпусе лептопа;
  2. Для ПК — в этом случае также возможно использование 2,5″ жестких дисков, но как правило, используются 3,5 дюйма;
  3. Внешние жесткие диски — устройства, отдельно подключаемые к ПК/ноутбуку, чаще всего выполняющие роль файлового хранилища.

Также выделяют особый тип жестких дисков — для серверов. Они идентичны обычным ПКшным, но могут отличаются интерфейсами для подключения, и большей производительностью.

Все остальные разделения HDD на виды происходят от их характеристик, поэтому рассмотрим их.

Характеристики жестких дисков

Итак, основные характеристики жесткого диска компьютера:

  • Объем — показатель максимально возможного количества данных, которые можно будет вместить на диске. Первое на что обычно смотрят при выборе HDD. Данный показатель может достигать 10 Тб, хотя для домашнего ПК чаще выбирают 500 Гб — 1 Тб;
  • Форм-фактор — размер жестокого диска. Самые распространенные — 3,5 и 2,5 дюйма. Как говорилось выше, 2,5″ в большинстве случаев, устанавливаются в ноутбуки. Также их используют во внешних HDD. В ПК и на сервера устанавливают 3,5″. Форм фактор влияет и на объем, так как на больший диск может поместиться больше данных;
  • Скорость вращения шпинделя — с какой скоростью вращаются блины. Наиболее распространены 4200, 5400, 7200 и 10000 об/мин. Эта характеристика напрямую влияет на производительность, а так же и цену устройства. Чем выше скорость — тем больше оба значения;
  • Интерфейс — способ (тип разъема) подключения HDD к компьютеру. Самым популярным интерфейсом для внутренних ЖД сегодня является SATA (в старых компьютерах использовался IDE). Внешние жесткие диски подключаются, как правило, по USB или FireWire. Кроме перечисленных, существуют еще такие интерфейсы как SCSI, SAS;
  • Объем буфера (кеш-память) — тип быстрой памяти (по типу ОЗУ) установленный на контроллере ЖД, предназначенный для временного хранения данных, к которым чаще всего обращаются. Объем буфера может составлять 16, 32 или 64 Мб;
  • Время произвольного доступа — то время, за которое HDD гарантированно выполнить запись или чтение с любого участка диска. Колеблется от 3 до 15 мс;

Кроме приведенных характеристик также можно встретить такие показатели как.

Существует множество типов накопителей на жестких дисках, но практически все они состоят из одних и тех же основных узлов. Конструкции этих узлов, а также качество используемых материалов могут различаться, но их основные рабочие характеристики и принципы функционирования одинаковы. Основные элементы конструкции типичного накопителя на жестком диске (см. рисунок ниже) перечислены ниже:

  • диски;
  • головки чтения/записи;
  • механизм привода головок;
  • двигатель привода дисков;
  • печатная плата со схемами управления;
  • кабели и разъемы;
  • элементы конфигурации (перемычки и переключатели).

Диски, двигатель привода дисков, головки и механизм привода головок обычно размещаются в герметичном корпусе, который называется HDA (Head Disk Assembly - блок головок и дисков). Обычно этот блок рассматривается как единый узел; его почти никогда не вскрывают. Прочие узлы, не входящие в блок HDA (печатная плата, лицевая панель, элементы конфигурации и монтажные детали), являются съемными.

Накопитель на жестких магнитных дисках содержит несколько дисков (пластин). На протяжении многих лет жесткие диски для ПК выпускались в нескольких формфакторах. Как правило, физические размеры жестких дисков выражаются в размере используемых пластин. Основные размеры пластин, используемых в жестких дисках ПК, приведены в таблице.

Существуют также накопители с дисками больших размеров, например 8 дюймов, 14 дюймов и даже больше, но, как правило, эти устройства в ПК не используются. Сейчас в настольных и некоторых портативных моделях чаще всего устанавливаются накопители формата 3,5 дюйма, а малогабаритные устройства (формата 2,5 дюйма и меньше) - в портативных системах.

В большинстве накопителей устанавливается минимум два диска, хотя в некоторых малых моделях бывает и по одному. Количество дисков ограничивается физическими размерами накопителя, а именно - высотой его корпуса. Самое большое количество дисков в накопителях формата 3,5 дюйма, с которым мне приходилось встречаться, - 12.

Раньше почти все диски производились из алюминиево-магниевого сплава, довольно прочного и легкого. Но со временем возникла потребность в накопителях, сочетающих малые размеры и большую емкость. Поэтому в качестве основного материала для дисков стало использоваться стекло, а точнее - композитный материал на основе стекла и керамики. Один из таких материалов называется MemCor и производится компанией Dow Corning. Он значительно прочнее, чем каждый из его компонентов в отдельности. Стеклянные диски отличаются большей прочностью и жесткостью, поэтому их можно сделать в два и более раз тоньше алюминиевых. Кроме того, они менее восприимчивы к перепадам температур, т.е. их размеры при нагреве и охлаждении изменяются весьма незначительно. Сегодня практически все жесткие диски выпускаются со стеклянными или стеклокерамическими пластинами.

Рабочий слой диска

тонким слоем вещества, способного сохранять остаточную намагниченность после воздействия внешнего магнитного поля. Этот слой называется рабочим или магнитным, и именно в нем сохраняется записанная информация. Самыми распространенными являются следующие типы рабочего слоя:

  • оксидный;
  • тонкопленочный;
  • двойной антиферромагнитный (AFC).

Оксидный слой

Оксидный слой представляет собой полимерное покрытие с наполнителем из окиси железа. Он наносится следующим образом. Сначала на поверхность быстро вращающегося алюминиевого диска разбрызгивается суспензия порошка оксида железа в растворе полимера. За счет действия центробежных сил она равномерно растекается по поверхности диска от его центра к внешнему краю. После полимеризации раствора поверхность шлифуется. Затем на нее наносится еще один слой чистого полимера, обладающего достаточной прочностью и низким коэффициентом трения, и диск окончательно полируется. Обычно толщина оксидного слоя - чуть больше 0,1 микрона. Если вам удастся заглянуть внутрь накопителя с такими дисками, то вы увидите, что они коричневого или желтого цвета.

Чем выше емкость накопителя, тем более тонким и гладким должен быть рабочий слой дисков. Но добиться качества покрытия, необходимого для накопителей большой емкости, в рамках традиционной технологии оказалось невозможным. Поскольку оксидный слой довольно мягкий, он крошится при “столкновениях” с головками (например, при случайных сотрясениях накопителя). Диски с таким рабочим слоем использовались с 1955 года; они так долго продержались благодаря простоте технологии и низкой стоимости. Однако в современных моделях накопителей они полностью уступили место тонкопленочным дискам.

Тонкопленочный слой

тия гораздо выше, чем у оксидного. Эта технология легла в основу производства накопителей нового поколения, в которых удалось существенно уменьшить величину зазора между головками и поверхностями дисков, что позволило повысить плотность записи.

Термин тонкопленочный рабочий слой очень удачен, так как это покрытие гораздо тоньше, чем оксидное. Этот слой называют также гальванизированным или напыленным, поскольку наносить тонкую пленку на поверхность дисков можно поразному.

Тонкопленочный гальванизированный рабочий слой получают путем электролиза. Это происходит почти так же, как при хромировании бампера автомобиля. Алюминиевую или стеклянную подложку диска последовательно погружают в ванны с различными растворами, в результате чего она покрывается несколькими слоями металлической пленки. Рабочим слоем служит слой из сплава кобальта толщиной всего около 1 микродюйма (около 0,025 мкм).

Метод напыления рабочего слоя заимствован из полупроводниковой технологии. Суть его сводится к тому, что в специальных вакуумных камерах вещества и сплавы вначале переводятся в газообразное состояние, а затем осаждаются на подложку. На алюминиевый диск сначала наносится слой фосфорита никеля, а затем магнитный кобальтовый сплав. Его толщина при этом - всего 1–2 микродюйма (0,025–0,05 мкм). Аналогично поверх магнитного слоя на диск наносится очень тонкое (порядка 0,025 мкм) углеродное защитное покрытие, обладающее исключительной прочностью. Это самый дорогостоящий процесс из всех описанных выше, так как для его проведения необходимы условия, приближенные к полному вакууму.

Как уже отмечалось, толщина магнитного слоя, полученного методом напыления, составляет около 0,025 мкм. Его исключительно гладкая поверхность позволяет сделать зазор между головками и поверхностями дисков гораздо меньшим, чем это было возможно раньше (0,076 мкм). Чем ближе к поверхности рабочего слоя располагается головка, тем выше плотность расположения зон смены знака на дорожке записи и, следовательно, плотность диска. Кроме того, при увеличении напряженности магнитного поля по мере приближения головки к магнитному слою увеличивается амплитуда сигнала; в результате соотношение “сигнал– шум” становится более благоприятным.

И при гальваническом осаждении, и при напылении рабочий слой получается очень тонким и прочным. Поэтому вероятность “выживания” головок и дисков в случае их контакта друг с другом на большой скорости существенно повышается. И действительно, современные накопители с дисками, имеющими тонкопленочные рабочие слои, практически не выходят из строя при вибрациях и сотрясениях. Оксидные покрытия в этом отношении гораздо менее надежны. Если бы вы смогли заглянуть внутрь корпуса накопителя, то увидели бы, что тонкопленочные покрытия дисков напоминают серебристую поверхность зеркал.

Двойной антиферромагнитный слой

Последним достижением в технологии изготовления носителей жестких дисков является использование двойных антиферромагнитных слоев (AFC), позволяющих существенно увеличить плотность рабочего слоя, превысив наложенные ранее ограничения. Увеличение плотности материала дает возможность уменьшить толщину магнитного слоя диска. Плотность записи жестких дисков (которая выражается в количестве дорожек на дюйм или в числе битов на дюйм) достигла той точки, в которой кристаллы магнитного слоя, используемые для хранения данных, становятся настолько малы, что это приводит к их нестабильности и как следствие - к низкой надежности запоминающего устройства. Границы плотности, получившие название суперпарамагнитного ограничения, должны находиться в пределах 30– 50 Гбит/дюйм2. С развитием технологии этот предел был преодолен и достиг 100 Гбит/дюйм2. Предполагается, что в будущем удастся достигнуть и поверхностной плотности записи в 200 Гбит/дюйм2, правда, при этом будут задействованы некоторые новые технологии.

Носители AFC состоят из двух магнитных слоев, разделенных исключительно тонкой пленкой металлического рутения, толщина которой - всего 3 атома (6 ангстрем). Подобная многослойная конструкция образует антиферромагнитное соединение, состоящее из верхнего и нижнего магнитных слоев, что позволяет различать эти слои по всей видимой высоте жесткого диска. Такая конструкция дает возможность использовать физически более толстые магнитные слои, имеющие более устойчивые кристаллы большого размера, благодаря чему носители могут функционировать как одинарный слой, отличающийся гораздо меньшей общей толщиной.

В 2001 году IBM использовала технологию AFC при создании целой серии 2,5-дюймовых накопителей Travelstar 30GN для портативных компьютеров; жесткие диски этого типа стали первыми накопителями с рабочим слоем AFC, появившимися на рынке. Кроме того, IBM начала создавать 3,5-дюймовые накопители с рабочим слоем AFC, используемые в настольных компьютерах. Первым накопителем этого типа стал Deskstar 120 GXP. Сегодня носители AFC выпускаются компанией Hitachi Global Storage Technologies, которая поглотила подразделение жестких дисков компании IBM, а также ряд других крупных производителей этого типа носителей. Технология AFC позволяет преодолеть рубеж плотности в 100 Гбит/дюйм2, а в сочетании с перпендикулярной магнитной записью (PMR) отодвинуть его до 200 Гбит/дюйм2. Внешне носитель с покрытием AFC выглядит, как зеркало.

В накопителях на жестких дисках для каждой из сторон каждого диска предусмотрена собственная головка чтения/записи. Все головки смонтированы на общем подвижном каркасе и перемещаются одновременно.

Конструкция каркаса с головками довольно проста. Каждая головка установлена на конце рычага, закрепленного на пружине и слегка прижимающего ее к диску. Мало кто знает о том, что диск как бы зажат между парой головок (сверху и снизу). И если бы это не повлекло за собой никаких последствий, можно было бы провести небольшой эксперимент: открыть накопитель и приподнять пальцем верхнюю головку. Как только бы вы ее отпустили, она вернулась бы в первоначальное положение (то же самое произошло бы и с нижней головкой).

На рисунке показана стандартная конструкция механизма привода головок с подвижной катушкой.

Когда накопитель выключен, головки касаются дисков под действием пружин. При раскручивании дисков аэродинамическое давление под головками повышается, и они отрываются от рабочих поверхностей (“взлетают”). Когда диск вращается на полной скорости, зазор между ним и головками может составлять 0,5–5 микродюймов и даже больше.

В начале 1960-х годов величина зазора между диском и головками составляла 200–300 микродюймов; в современных накопителях она достигает 10 нм, или 0,4 микродюйма. Для обеспечения повышенной плотности записи в будущем физическое расстояние между головкой и дисковой пластиной будет продолжать уменьшаться; возможно, такие головки даже будут входить в прямой контакт с поверхностью диска. Естественно, для этого потребуются новые конструкции носителей и головок.

Внимание!

Общая тенденция такова: чем раньше был выпущен накопитель и чем меньше его емкость, тем больше зазор между головками и поверхностями дисков. Именно из-за малого размера этого зазора блок HDA можно вскрывать только в абсолютно чистых помещениях: любая пылинка, попавшая в зазор, может привести к ошибкам при считывании данных и даже к столкновению головок с дисками на полном ходу. В последнем случае может быть повреждена или головка, или диск, что одинаково неприятно.

Именно поэтому сборка блоков HDA выполняется только в чистых помещениях, соответствующих требованиям класса 100 (или даже более высоким). Это означает, что в одном кубическом футе воздуха может присутствовать не более 100 пылинок размером до 0,5 мкм. Для сравнения: стоящий неподвижно человек каждую минуту выдыхает порядка 500 таких частиц! Поэтому помещения оснащаются специальными системами фильтрации и очистки воздуха. Блоки HDA можно вскрывать только в таких условиях.

Поддержка столь стерильных условий стоит немалых денег. Некоторые фирмы выпускают “чистые цеха” в настольном исполнении. Стоят они всего несколько тысяч долларов и выглядят, как большие ящики с прозрачными стенками, в которые вмонтированы перчатки для оператора. Прежде чем приступить к работе, оператор должен вставить в ящик устройство и все необходимые инструменты, затем закрыть ящик и включить систему фильтрации. Через
некоторое время можно будет начинать разборку и прочие операции с накопителем. Существуют и другие способы создания стерильных условий. Представьте себе, например, монтажный стол, отгороженный от окружающего пространства воздушной завесой, причем непосредственно на рабочее место под давлением постоянно подается очищенный воздух.

Это напоминает устанавливаемые на зиму в дверях магазинов “занавески” из горячего воздуха, которые не мешают покупателям, но и не позволяют теплу из помещения выйти наружу. Поскольку подобное оборудование стоит довольно дорого, за ремонт накопителей на жестких дисках обычно берутся только их производители.

Конструкции головок чтения/записи!
По мере развития технологии производства дисковых накопителей совершенствовались и конструкции головок чтения/записи. Первые головки представляли собой сердечники с обмоткой (электромагниты). По современным меркам их размеры были огромными, а плотность записи - чрезвычайно низкой. За прошедшие годы конструкции головок прошли долгий путь развития от первых головок с ферритовыми сердечниками до современных гигантских магниторезистивных моделей. Более подробно о различных конструкциях головок можно узнать из главы 8.

Привод - самая важная деталь накопителя. В таблице показана зависимость характеристик накопителя на жестких дисках от конкретного типа привода.

Приводы с шаговым двигателем обычно использовались на жестких дисках емкостью до 100 Мбайт и менее, которые создавались в 1980-х и в начале 1990-х годов. Во всех накопителях, имеющих более высокую емкость, обычно используются приводы с подвижной катушкой. В накопителях на гибких дисках для перемещения головок используется привод с шаговым двигателем. Его параметров (в том числе и точности) вполне достаточно для дисководов этого типа, поскольку плотность дорожек записи на гибких дисках значительно ниже (135 дорожек на дюйм), чем в накопителях на жестких дисках (более 5000 дорожек на дюйм). большинстве выпускаемых сегодня накопителей устанавливаются приводы с подвижными катушками.

Шаговый двигатель - это электродвигатель, ротор которого может поворачиваться только ступенчато, т.е. на строго определенный угол. Если покрутить его вал вручную, то можно услышать негромкие щелчки (или треск при быстром вращении), которые возникают всякий раз, когда ротор проходит очередное фиксированное положение.

Шаговые двигатели могут устанавливаться только в фиксированных положениях. Размеры этих двигателей невелики (порядка нескольких сантиметров), а форма может быть прямоугольной, цилиндрической и т.д. Шаговый двигатель устанавливается вне блока HDA, но его вал проходит внутрь через отверстие с герметизирующей прокладкой. Обычно двигатель располагается у одного из углов корпуса накопителя, и его можно легко узнать.

Одна из самых серьезных проблем механизма с шаговым двигателем - нестабильность температуры. При нагреве и охлаждении диски расширяются и сжимаются, в результате чего дорожки смещаются относительно своих прежних положений. Поскольку механизм привода головок не позволяет сдвинуть их на расстояние, меньшее одного шага (переход на одну дорожку), компенсировать погрешности температур невозможно. Головки перемещаются в соответствии с поданным на шаговый двигатель количеством импульсов.

Привод с шаговым двигателем показан на рисунке.

Сегодня многие уверены, что магнитные жесткие диски слишком медлительны, ненадежны и технически устарели. В то же время твердотельные накопители, напротив, находятся на пике своей славы: в каждом мобильном устройстве имеется носитель информации на основе флеш-памяти, и даже настольные ПК используют такие диски. Однако их перспективы весьма ограничены. Согласно прогнозу CHIP, SSD еще немного упадут в цене, плотность записи данных и, следовательно, емкость дисков, скорее всего, удвоятся, а затем настанет конец. Твердотельные накопители емкостью 1 Тбайт всегда будут слишком дорогими. На их фоне жесткие магнитные диски аналогичной вместимости выглядят весьма привлекательно, поэтому говорить о закате эпохи традиционных накопителей рано. Однако сегодня они стоят на распутье. Потенциал текущей технологии - метода перпендикулярной записи - допускает еще два годичных цикла, в течение которых будут выпущены новые модели увеличенной емкости, а затем будет достигнут предел.

Если три основных производителя - Seagate, Western Digital и Toshiba - смогут выполнить переход на одну из представленных в этой статье новых технологий, то 3,5-дюймовые жесткие диски емкостью 60 Тбайт и выше (что в 20 раз больше по сравнению с текущими моделями) перестанут быть недостижимой роскошью. Одновременно с этим возрастет и скорость чтения,достигнув уровня SSD, так как она зависит непосредственно от плотности записываемых данных: чем меньше расстояние, которое необходимо преодолевать считывающей головке, тем быстрее работает диск. Поэтому, если наш «информационный голод» продолжит расти, все «лавры» достанутся жестким магнитным дискам.

Метод перпендикулярной записи

С некоторых пор в жестких дисках используется метод перпендикулярной записи (на вертикально расположенные домены), обеспечивающий более высокую плотность данных. В настоящее время он является нормой. Последующие технологии сохранят данный способ.

6 Тбайт: лимит почти достигнут

Через два года диски с методом перпендикулярной записи дойдут до предела плотности данных на пластине.

В современных жестких дисках емкостью до 4 Тбайт плотность записи магнитных пластин не превышает 740 Гбит на квадратный дюйм. Производители обещают, что накопители, использующие методом перпендикулярной записи, смогут обеспечить показатель в 1 Тбит на квадратный дюйм. Через два года выйдет последнее поколение подобных дисков: емкость моделей форм-фактора 3,5 дюйма достигнет 6 Тбайт, а 2,5-дюймовые смогут предоставить чуть более 2 Тбайт дискового пространства. Однако столь скромные темпы роста плотности записи уже не поспевают за нашим постоянно усиливающимся информационным голодом, что демонстрируют следующие графики.

Проблема выбора материалов

Винчестеры с перпендикулярным методом записи не способны удовлетворить растущие потребности в сфере хранения данных, так как при плотности записи немногим более 1 Тбит на квадратный дюйм они вынуждены бороться с эффектом суперпарамагнетизма. Данный термин означает, что определенного размера частицы магнитных материалов не способны длительное время сохранять состояние намагниченности, которое может внезапно измениться под действием тепла из окружающей среды. То, при каком размере частиц наступает данный эффект, зависит от используемого материала (см. таблицу ниже). Пластины современных HDD с перпендикулярной записью изготавливаются из сплава кобальта, хрома и платины (CoCrPt), частицы которого имеют диаметр 8 нм и длину 16 нм. Для записи одного бита головке необходимо намагнитить около 20 таких частиц. При диаметре 6 нм и меньшем частицы данного сплава не способны надежно сохранять состояние своего магнитного поля.

В индустрии производства жестких дисков часто говорят о «трилемме». Производители могут использовать три основных способа увеличения плотности записи: изменение размера частиц, их количества и типа сплава, из которого они состоят. Но при размере частиц CoCrPt-сплава от 6 нм использование одного из способов приведет к тому, что два других окажутся бесполезными: если уменьшить размер частиц, то они будут терять свою намагниченность. Если уменьшить их количество на бит, их сигнал «растворится» в окружающем шуме соседних битов. Считывающая головка не сможет определить, имеет ли она дело с «0» или «1». Сплав с более высокими магнитными характеристиками позволяет использовать частицы меньших размеров, а также допускает сокращение их количества, однако в данном случае записывающая головка оказывается не в состоянии изменить их намагниченность. Данную трилемму можно решить только в том случае, если производители откажутся от метода перпендикулярной записи. Для этого наготове уже есть несколько технологий.

До 60 Тбайт: новые технологии записи

Плотность записи будущих HDD можно увеличить в десять раз - с помощью микроволн, лазеров, SSD-контроллеров и новых сплавов.

Наиболее перспективной разработкой, способной обеспечить плотность записи свыше 1 Тбит на квадратный дюйм, является технология магнитной записи с частичным перекрытием дорожек (метод «черепичной» записи - Shingled Magnetic Recording, SMR). Ее принцип заключается в том, что магнитные дорожки SMR-диска частично накладываются друг на друга, подобно черепице на крыше. Данная технология позволяет преодолеть присущее методу перпендикулярной записи затруднение: дальнейшее уменьшение ширины дорожек неизбежно приведет к невозможности записи данных. Современные диски имеют раздельные дорожки шириной от 50 до 30 нм. Минимально возможная ширина дорожек при перпендикулярной записи составляет 25 нм. В технологии SMR, благодаря частичному перекрытию, ширина дорожки для считывающей головки может составлять до 10 нм, что соответствует плотности записи в 2,5 Тбит на квадратный дюйм. Хитрость в том, чтобы увеличить ширину дорожек записи до 70 нм, обеспечив при этом стопроцентную намагничиваемость края дорожки. Край дорожки не претерпит изменений, если записать следующую со смещением в 10 нм. Кроме того, записывающая головка оснащается защитным экраном, чтобы ее мощное магнитное поле не повредило расположенные под ней данные. Что касается головки, она уже разработана
компанией Hitachi. Однако существует еще одна проблема: обычно на магнитном диске производится прямая раздельная перезапись битов, а в рамках технологии SMR это возможно только на самой верхней дорожке пластины. Для изменения битов, расположенных на нижней дорожке, потребуется повторная перезапись всей пластины, что снижает производительность.

Перспективный преемник: HAMR

Тем временем международная организация по дисковым накопителям, материалам и оборудованию IDEMA отдает предпочтение термоассистируемой магнитной записи (HAMR, Heat Assisted Magnetic Recording) и рассматривает именно ее в качестве наиболее вероятного претендента на роль преемника технологии перпендикулярной записи. Марк Гинен из советадиректоров IDEMA прогнозирует появление в продаже первых HAMR-дисков в 2015 году.
В отличие от SMR технология HAMR решает трилемму путем уменьшения магнитных частиц, а для этого требуется переход на новый материал. Для HAMR-дисков необходимо использовать материал с более высокой анизотропной энергией - наиболее перспективным является сплав железа и платины (FePt). Анизотропия определяет, сколько потребуется энергии для устранения намагниченности материала. В FePt она настолько высока, что только частицы размером 2,5 нм сталкиваются с суперпарамагнетическим пределом (см. таблицу в следующем разделе). Данное обстоятельство позволило бы производить жесткие диски емкостью 30 Тбайт с плотностью записи 5 Тбит на квадратный дюйм.

Проблема заключается в том, что самостоятельно записывающая головка не способна изменить магнитную ориентацию частиц сплава FePt. Поэтому в HAMR-дисках в нее встраивается лазер, который на мгновение разогревает частицы нап участке площадью несколько нанометров до температуры примерно в 400 °С. В результате записывающей головке требуется меньше энергии для изменения магнитного поля частиц. Исходя из значений плотности записи, диски с термоассистируемой магнитной записью могут иметь высокую скорость чтения (около 400–500 Мбайт/с), которая сегодня достижима только для SSD-накопителей с интерфейсом SATA 3.

Помимо лазера обеспечить возможность записи на пластинах из сплава FePt также способен генератор момента спина (Spin Torque Oscillator), излучающий микроволны. Микроволны изменяют характеристики магнитного поля частиц таким образом, что слабая записывающая головка легко их перемагничивает. В целом, генератор увеличивает эффективность записывающей головки в три раза. Технология микроволновой магнитной записи (Microwave Assisted Magnetic Recording, MAMR), в отличие от HAMR, пока находится в стадии разработки.

Новый сплав металлов для дисков с теромассистируемой магнитной записью

Сплаву FePt в HAMR-диске свойствен более высокий показатель анизотропной энергии и повышенная способность к намагничиванию. По сравнению с методом перпендикулярной записи здесь могут быть использованы частицы меньших размеров.

Что будет после HAMR?

Технология битовых массивов (Bit-Patterned Media, BPM) долгое время считалась самой перспективной. Она предусматривает иное решение трилеммы: в данном случае магнитные частицы отделены друг от друга изоляционным слоем из оксида кремния. В отличие от традиционных магнитных дисков намагничиваемые области наносятся с помощью литографии, как при производстве чипов. Это делает производство BPM-носителей довольно дорогим. BPM позволяет уменьшить количество частиц на бит и при этом избежать влияния шума соседних частиц на сигнал. Единственной проблемой на сегодняшний день является создание головки чтения/записи, которая смогла бы обеспечивать высокую точность управления BPM-битами. Поэтому в настоящее время BPM рассматривается как наиболее вероятный преемник HAMR. Если объединить обе технологии, можно добиться плотности записи в 10 Тбит на квадратный дюйм и производить диски емкостью 60 Тбайт.

Новым предметом изысканий является технология двумерной магнитной записи (Two Dimensional Magnetic Recording, TDMR), которая позволяет решить трилемму путем устранения затруднения, связанного с отношением сигнал/шум. При небольшом количестве частиц на бит считывающая головка получает нечеткий сигнал, так как он имеет низкую мощность и теряется в шуме соседних частиц. Особенность технологии TDMR заключается в возможности восстановления потерянного сигнала. Для этого требуются несколько отпечатков считывающей головки или отпечаток нескольких считывающих головок, которые формируют 2D-изображение поверхности. На основе этих изображений декодер восстанавливает соответствующие биты.

Жесткие диски, или, как их еще называют, винчестеры, являются одной из самых главных составляющих компьютерной системы. Об это знают все. Но вот далеко не каждый современный пользователь даже в принципе догадывается о том, как функционирует жесткий диск. Принцип работы, в общем-то, для базового понимания достаточно несложен, однако тут есть свои нюансы, о которых далее и пойдет речь.

Вопросы предназначения и классификации жестких дисков?

Вопрос предназначения, конечно, риторический. Любой пользователь, пусть даже самого начального уровня, сразу же ответит, что винчестер (он же жесткий диск, он же Hard Drive или HDD) сразу же ответит, что он служит для хранения информации.

В общем и целом верно. Не стоит забывать, что на жестком диске, кроме операционной системы и пользовательских файлов, имеются созданные ОС загрузочные секторы, благодаря которым она и стартует, а также некие метки, по которым на диске можно быстро найти нужную информацию.

Современные модели достаточно разнообразны: обычные HDD, внешние жесткие диски, высокоскоростные твердотельные накопители SSD, хотя их именно к жестким дискам относить и не принято. Далее предлагается рассмотреть устройство и принцип работы жесткого диска, если не в полном объеме, то, по крайней мере, в таком, чтобы хватило для понимания основных терминов и процессов.

Обратите внимание, что существует и специальная классификация современных HDD по некоторым основным критериям, среди которых можно выделить следующие:

  • способ хранения информации;
  • тип носителя;
  • способ организации доступа к информации.

Почему жесткий диск называют винчестером?

Сегодня многие пользователи задумываются над тем, почему называют винчестерами, относящимися к стрелковому оружию. Казалось бы, что может быть общего между этими двумя устройствами?

Сам термин появился еще в далеком 1973 году, когда на рынке появился первый в мире HDD, конструкция которого состояла из двух отдельных отсеков в одном герметичном контейнере. Емкость каждого отсека составляла 30 Мб, из-за чего инженеры дали диску кодовое название «30-30», что было в полной мере созвучно с маркой популярного в то время ружья «30-30 Winchester». Правда, в начале 90-х в Америке и Европе это название практически вышло из употребления, однако до сих пор остается популярным на постсоветском пространстве.

Устройство и принцип работы жесткого диска

Но мы отвлеклись. Принцип работы жесткого диска кратко можно описать как процессы считывания или записи информации. Но как это происходит? Для того чтобы понять принцип работы магнитного жесткого диска, в первую очередь необходимо изучить, как он устроен.

Сам жесткий диск представляет собой набор пластин, количество которых может колебаться от четырех до девяти, соединенных между собой валом (осью), называемым шпинделем. Пластины располагаются одна над другой. Чаще всего материалом для их изготовления служат алюминий, латунь, керамика, стекло и т. д. Сами же пластины имеют специальное магнитное покрытие в виде материала, называемого платтером, на основе гамма-феррит-оксида, окиси хрома, феррита бария и т. д. Каждая такая пластина по толщине составляет около 2 мм.

За запись и чтение информации отвечают радиальные головки (по одной на каждую пластину), а в пластинах используются обе поверхности. За которого может составлять от 3600 до 7200 об./мин, и перемещение головок отвечают два электрических двигателя.

При этом основной принцип работы жесткого диска компьютера состоит в том, что информация записывается не куда попало, а в строго определенные локации, называемые секторами, которые расположены на концентрических дорожках или треках. Чтобы не было путаницы, применяются единые правила. Имеется ввиду, что принципы работы накопителей на жестких дисках, с точки зрения их логической структуры, универсальны. Так, например, размер одного сектора, принятый за единый стандарт во всем мире, составляет 512 байт. В свою очередь секторы делятся на кластеры, представляющие собой последовательности рядом находящихся секторов. И особенности принципа работы жесткого диска в этом отношении состоят в том, что обмен информацией как раз и производится целыми кластерами (целым числом цепочек секторов).

Но как же происходит считывание информации? Принципы работы накопителя на жестких магнитных дисках выглядят следующим образом: с помощью специального кронштейна считывающая головка в радиальном (спиралевидном) направлении перемещается на нужную дорожку и при повороте позиционируется над заданным сектором, причем все головки могут перемещаться одновременно, считывая одинаковую информацию не только с разных дорожек, но и с разных дисков (пластин). Все дорожки с одинаковыми порядковыми номерами принято называть цилиндрами.

При этом можно выделить еще один принцип работы жесткого диска: чем ближе считывающая головка к магнитной поверхности (но не касается ее), тем выше плотность записи.

Как осуществляется запись и чтение информации?

Жесткие диски, или винчестеры, потому и были названы магнитными, что в них используются законы физики магнетизма, сформулированные еще Фарадеем и Максвеллом.

Как уже говорилось, на пластины из немагниточувствительного материала наносится магнитное покрытие, толщина которого составляет всего лишь несколько микрометров. В процессе работы возникает магнитное поле, имеющее так называемую доменную структуру.

Магнитный домен представляет собой строго ограниченную границами намагниченную область ферросплава. Далее принцип работы жесткого диска кратко можно описать так: при возникновении воздействия внешнего магнитного поля, собственное поле диска начинает ориентироваться строго вдоль магнитных линий, а при прекращении воздействия на дисках появляются зоны остаточной намагниченности, в которой и сохраняется информация, которая ранее содержалась в основном поле.

За создание внешнего поля при записи отвечает считывающая головка, а при чтении зона остаточной намагниченности, оказавшись напротив головки, создает электродвижущую силу или ЭДС. Далее все просто: изменение ЭДС соответствует единице в двоичном коде, а его отсутствие или прекращение - нулю. Время изменения ЭДС принято называть битовым элементом.

Кроме того, магнитную поверхность чисто из соображений информатики можно ассоциировать, как некую точечную последовательность битов информации. Но, поскольку местоположение таких точек абсолютно точно вычислить невозможно, на диске нужно установить какие-то заранее предусмотренные метки, которые помогли определить нужную локацию. Создание таких меток называется форматированием (грубо говоря, разбивка диска на дорожки и секторы, объединенные в кластеры).

Логическая структура и принцип работы жесткого диска с точки зрения форматирования

Что касается логической организации HDD, здесь на первое место выходит именно форматирование, в котором различают два основных типа: низкоуровневое (физическое) и высокоуровневое (логическое). Без этих этапов ни о каком приведении жесткого диска в рабочее состояние говорить не приходится. О том, как инициализировать новый винчестер, будет сказано отдельно.

Низкоуровневое форматирование предполагает физическое воздействие на поверхность HDD, при котором создаются секторы, расположенные вдоль дорожек. Любопытно, что принцип работы жесткого диска таков, что каждый созданный сектор имеет свой уникальный адрес, включающий в себя номер самого сектора, номер дорожки, на которой он располагается, и номер стороны пластины. Таким образом, при организации прямого доступа та же оперативная память обращается непосредственно по заданному адресу, а не ищет нужную информацию по всей поверхности, за счет чего и достигается быстродействие (хотя это и не самое главное). Обратите внимание, что при выполнении низкоуровневого форматирования стирается абсолютно вся информация, и восстановлению она в большинстве случаев не подлежит.

Другое дело - логическое форматирование (в Windows-системах это быстрое форматирование или Quick format). Кроме того, эти процессы применимы и к созданию логических разделов, представляющих собой некую область основного жесткого диска, работающую по тем же принципам.

Логическое форматирование, прежде всего, затрагивает системную область, которая состоит из загрузочного сектора и таблиц разделов (загрузочная запись Boot record), таблицы размещения файлов (FAT, NTFS и т. д.) и корневого каталога (Root Directory).

Запись информации в секторы производится через кластер несколькими частями, причем в одном кластере не может содержаться два одинаковых объекта (файла). Собственно, создание логического раздела, как бы отделяет его от основного системного раздела, вследствие чего информация, на нем хранимая, при появлении ошибок и сбоев изменению или удалению не подвержена.

Основные характеристики HDD

Думается, в общих чертах принцип работы жесткого диска немного понятен. Теперь перейдем к основным характеристикам, которые и дают полное представление обо всех возможностях (или недостатках) современных винчестеров.

Принцип работы жесткого диска и основные характеристики могут быть совершенно разными. Чтобы понять, о чем идет речь, выделим самые основные параметры, которыми характеризуются все известные на сегодня накопители информации:

  • емкость (объем);
  • быстродействие (скорость доступа к данным, чтение и запись информации);
  • интерфейс (способ подключения, тип контроллера).

Емкость представляет собой общее количество информации, которая может быть записана и сохранена на винчестере. Индустрия по производству HDD развивается так быстро, что сегодня в обиход вошли уже жесткие диски с объемами порядка 2 Тб и выше. И, как считается, это еще не предел.

Интерфейс - самая значимая характеристика. Она определяет, каким именно способом устройство подключается к материнской плате, какой именно контроллер используется, как осуществляется чтение и запись и т. д. Основными и самыми распространенными интерфейсами считаются IDE, SATA и SCSI.

Диски с IDE-интерфейсом отличаются невысокой стоимостью, однако среди главных недостатков можно выделить ограниченное количество одновременно подключаемых устройств (максимум четыре) и невысокую скорость передачи данных (причем даже при условии поддержки прямого доступа к памяти Ultra DMA или протоколов Ultra ATA (Mode 2 и Mode 4). Хотя, как считается, их применение позволяет повысить скорость чтения/записи до уровня 16 Мб/с, но в реальности скорость намного ниже. Кроме того, для использования режима UDMA требуется установка специального драйвера, который, по идее, должен поставляться в комплекте с материнской платой.

Говоря о том, что собой представляет принцип работы жесткого диска и характеристики, нельзя обойти стороной и который является наследником версии IDE ATA. Преимущество данной технологии состоит в том, что скорость чтения/записи можно повысить до 100 Мб/с за счет применения высокоскоростной шины Fireware IEEE-1394.

Наконец, интерфейс SCSI по сравнению с двумя предыдущими является наиболее гибким и самым скоростным (скорость записи/чтения достигает 160 Мб/с и выше). Но и стоят такие винчестеры практически в два раза дороже. Зато количество одновременно подключаемых устройств хранения информации составляет от семи до пятнадцати, подключение можно осуществлять без обесточивания компьютера, а длина кабеля может составлять порядка 15-30 метров. Собственно, этот тип HDD большей частью применяется не в пользовательских ПК, а на серверах.

Быстродействие, характеризующее скорость передачи и пропускную способность ввода/вывода, обычно выражается временем передачи и объемом передаваемых расположенных последовательно данных и выражается в Мб/с.

Некоторые дополнительные параметры

Говоря о том, что представляет собой принцип работы жесткого диска и какие параметры влияют на его функционирование, нельзя обойти стороной и некоторые дополнительные характеристики, от которых может зависеть быстродействие или даже срок эксплуатации устройства.

Здесь на первом месте оказывается скорость вращения, которая напрямую влияет на время поиска и инициализации (распознавания) нужного сектора. Это так называемое скрытое время поиска - интервал, в течение которого необходимый сектор поворачивается к считывающей головке. Сегодня принято несколько стандартов для скорости вращения шпинделя, выраженной в оборотах в минуту со временем задержки в миллисекундах:

  • 3600 - 8,33;
  • 4500 - 6,67;
  • 5400 - 5,56;
  • 7200 - 4,17.

Нетрудно заметить, что чем выше скорость, тем меньшее время затрачивается на поиск секторов, а в физическом плане - на оборот диска до установки для головки нужной точки позиционирования пластины.

Еще один параметр - внутренняя скорость передачи. На внешних дорожках она минимальна, но увеличивается при постепенном переходе на внутренние дорожки. Таким образом, тот же процесс дефрагментации, представляющий собой перемещение часто используемых данных в самые быстрые области диска, - не что иное, как перенос их на внутреннюю дорожку с большей скоростью чтения. Внешняя скорость имеет фиксированные значения и напрямую зависит от используемого интерфейса.

Наконец, один из важных моментов связан с наличием у жесткого диска собственной кэш-памяти или буфера. По сути, принцип работы жесткого диска в плане использования буфера в чем-то похож на оперативную или виртуальную память. Чем больше объем кэш-памяти (128-256 Кб), тем быстрее будет работать жесткий диск.

Главные требования к HDD

Основных требований, которые в большинстве случаев предъявляются жестким дискам, не так уж и много. Главное - длительный срок службы и надежность.

Основным стандартом для большинства HDD считается срок службы порядка 5-7 лет со временем наработки не менее пятисот тысяч часов, но для винчестеров высокого класса этот показатель составляет не менее миллиона часов.

Что касается надежности, за это отвечает функция самотестирования S.M.A.R.T., которая следит за состоянием отдельных элементов жесткого диска, осуществляя постоянный мониторинг. На основе собранных данных может формироваться даже некий прогноз появления возможных неисправностей в дальнейшем.

Само собой разумеется, что и пользователь не должен оставаться в стороне. Так, например, при работе с HDD крайне важно соблюдать оптимальный температурный режим (0 - 50 ± 10 градусов Цельсия), избегать встрясок, ударов и падений винчестера, попадания в него пыли или других мелких частиц и т. д. Кстати сказать, многим будет интересно узнать, что те же частицы табачного дыма примерно в два раза больше расстояния между считывающей головкой и магнитной поверхностью винчестера, а человеческого волоса - в 5-10 раз.

Вопросы инициализации в системе при замене винчестера

Теперь несколько слов о том, какие действия нужно предпринять, если по каким-то причинам пользователь менял жесткий диск или устанавливал дполнительный.

Полностью описывать это процесс не будем, а остановимся только на основных этапах. Сначала винчестер необходимо подключить и посмотреть в настройках BIOS, определилось ли новое оборудование, в разделе администрирования дисков произвести инициализацию и создать загрузочную запись, создать простой том, присвоить ему идентификатор (литеру) и выполнить форматирование с выбором файловой системы. Только после этого новый «винт» будет полностью готов к работе.

Заключение

Вот, собственно, и все, что вкратце касается основ функционирования и характеристик современных винчестеров. Принцип работы внешнего жесткого диска здесь не рассматривался принципиально, поскольку он практически ничем не отличается от того, что используется для стационарных HDD. Единственная разница состоит только в методе подключения дополнительного накопителя к компьютеру или ноутбуку. Наиболее распространенным является соединение через USB-интерфейс, который напрямую соединен с материнской платой. При этом, если хотите обеспечить максимальное быстродействие, лучше использовать стандарт USB 3.0 (порт внутри окрашен в синий цвет), естественно, при условии того, что и сам внешний HDD его поддерживает.

В остальном же, думается, многим хоть немного стало понятно, как функционирует жесткий диск любого типа. Быть может, выше было приведено слишком много тем более даже из школьного курса физики, тем не менее без этого в полной мере понять все основные принципы и методы, заложенные в технологиях производства и применения HDD, понять не получится.



Рассказать друзьям