Истечение жидкости через отверстия и насадки. Истечение сжатого воздуха через отверстие Связь характеристик вентиляционных систем с уровнем шума

💖 Нравится? Поделись с друзьями ссылкой

Мы привыкли в акустических расчетах считать затухание шума в воздуховодах, шумоглушителях и пр. Но забываем про то, что воздуховоды, также как и шумоглушители, кстати, являются источниками шума.

Я сознательно не буду различать уровни звукового давления и уровни звуковой мощности, писать про А-фильтры и т.п. Давайте пройдемся по "верхам"...

Итак, посмотрим, как генерация шума в воздуховодах влияет на наши акустические расчеты...

Октавный уровень шума, генерируемый воздуховодом, вычисляется по формуле:

L w = 10 + 50 log(v) + 10 log(A), где

L w = уровень звуковой мощности, дБ

v = скорость воздуха, м/с

A = площадь поперечного сечения воздуховода, м2

Собственно, на странице сайта

http://www.engineeringtoolbox.com и приведен пример для одного из случаев:

Теперь представим себе нашу математическую модель:

1. Вентилятор бесконечно большого напора. Акустические характеристики принимаем по типовой установке VTS
2. После вентилятора установлен 2-х метровый шумоглушитель. Его генерацию шума не учитываем, о чем будет разъяснено ниже
3. Воздуховод 400х400 мм с нулевыми утечками воздуха, т.е. расход воздуха постоянен по всей длине воздуховода

Также нам понадобится старенький, но верный

СНиП II-12-77 "Защита от шума" , а именно таблица 5, из которой мы понимаем правило сложения источников шума от нескольких источников:

Итак, заносим наши данные в таблицу.
Хочу обратить ваше внимание на таблицу 5 СНиП II-12-77. Если разница шума от двух источников больше 10 дБ, то влияние "тихого" источника не учитывают на практике. А разница в 10 дБ - это 0,4 дБ прибавка к наиболее шумному источнику.

Случай 1. Скорость 7 м/с. Длина воздуховода 10 метров:


Как мы видим пока генерация шума в воздуховодах (строка 6) не влияет на общий уровень шума в воздуховодах. ДА и генерацию шума в глушителе я не считаю по этой же причине.

Случай 2. Скорость 7 м/с. Длина воздуховода 50 метров:

При такой большой длине воздушного тракта затухание шума в воздуховоде настолько значительно, что шум, генерируемый стенками воздуховода, начинает влиять на общий уровень шума

Случай 3. Скорость 7 м/с. Длина воздуховода 170 м:

При такой длине, которая на практике редко достигается, по высоким частотам прибавка определяется генерацией шума от воздуховода.

НУ и если взять чисто теоретическую длину в 1000 метров, то только генерация шума и будет вам доставлять неудобства.

Поиграться с этой простенькой программой можно. Скачайте её

.

Выводы, которые следуют из всего вышесказанного:

1. Чем выше скорость, тем выше генерация шума воздуховодом
2. Чем больше сечение воздуховода, тем выше генерация шума при одной и той же скорости . Оно и понятно: жесткость конструкции воздуховода, даже при увеличении толщины стенки, снижается при увеличении диаметра
Однако, я уточню по ASHRAE действительно ли это так. Французы почему-то коррелируют удельное падение давления с генерацией шума, т.е. чем больше сечение, тем меньше шум при одной и той же скорости.
3. Даже самый тихий вентилятор не способен подать воздух в помещение с "нулевой" звуковой мощностью на выходе из воздухораспределителя . Генерация шума никуда не денется, плюс генерация шума в воздухораспределителях и т.п.

Коллеги, если я слоупок и все такое - буду благодарен за конструктивные замечания и предложения.

Шум от неоднородности потока (Гц) носит дискретный характер, причем в спектре обычно имеется несколько составляющих (гармоник):

f=m(nz/60), (16)

где т — номер составляющей (т = 1, 2, 3, ...); п — скорость вращения, об/мин; z — число лопаток колеса.

Борьба с шумом от неоднородности потока ведется по линии улучшения аэродинамических характеристик машин.

В спектрах шуматурбомашин, например вентиляторов, можно различить несколько областей (рис. 44, а):

Рис. 44. Спектры шума источников аэродинамического происхождения:

а — вентилятора; б — мотоциклетного двигателя; в — газотурбинной энергетической установки; 1, 2 — шум выпуска и впуска; 3 — корпусной шум; 4 — шум при прокрутке двигателя

1) область частот механического шума (I), кратных об/с;

2) область шума от неоднородности потока (II с f1, f2, f и т. д.);

3) область вихревого шума (III).

Уровень звуковой мощности вентиляторного шума (дБ) зависит от полного давления Н (кгс/м2) и производительности вентилятора Q (м3/с), а также от критерия шумности т, характеризующего шумность данного типа вентиляторов (т = 35-7-50 дБ):

LP = τ + 25 lgH+10lgQ.

В двигателях внутреннего сгорания основными источниками шума являются шум систем выпуска и впуска, а также шум, излучаемый корпусом двигателя.

Выхлоп двигателей создает наибольший шум, интенсивность которого и спектр зависят от числа выхлопов в секунду, продолжительность выхлопа, от конструкции системы выхлопа и от мощности двигателя. Шум впуска и корпусный шум по своей интенсивности ниже шума выхлопа (рис. 44, б).

В спектрах шума двигателей присутствует значительное количество дискретных составляющих, кратных частоте f, равной числу выхлопов в секунду. Например, для двухтактного двигателя fi = in\60, для четырехтактного fi = in(2*60) (i - число цилиндров; п — скорость вращения коленчатого вала, об/мин).

Интенсивными аэродинамическими шумами характеризуются компрессоры, воздуходувки, пневматические двигатели и другие подобные машины.

Источниками шума компрессорных установок являются выходящие в атмосферу всасывающие и выхлопные (для сброса воздуха) воздуховоды, корпуса компрессоров, стенки воздуховодов, проходящих по помещениям.

В зависимости от конструкции компрессора спектр его шума имеет различный характер. Так, шум поршневых компрессоров носит низкочастотный характер, обусловленный числом сжатия в секунду. Шум турбокомпрессоров, наоборот, высокочастотен, что связано с природой образующегося шума (вихревой шум и шум от неоднородности потока).

В настоящее время большое распространение получили газотурбинные энергетические установки (ГТУ). По своей природе шум в ГТУ делится на шумы аэродинамического (газодинамического) и механического происхождения, причем наибольшее значение имеют аэродинамический шум, излучаемый всасывающим трактом ГТУ. Основным источником этого шума является компрессор, при работе которого уровни суммарного шума достигают 135—145 дБ. В спектре шума всасывания (рис. 44, в) преобладают высокочастотные дискретные составляющие. Основная частота первой из них определяется по формуле (16).

Аэродинамический шум в источнике ГТУ может быть снижен: увеличением зазора между лопаточными решетками; подбором оптимального соотношения чисел направляющих и рабочих лопаток; облагораживанием проточной части компрессоров и турбин и т. п.

Шум механического происхождения (вибрации системы роторов, подшипников, элементов редукторов и т. д.), являющийся превалирующим в машинном отделении, может быть ослаблен за счет проведения мероприятий^ рассмотренных выше для механических шумов.

При вращательном движении тел, например винтов самолета, возникает так называемый шум вращения. Он образуется вследствие того, что тело периодически порождает пульсации давления в каждой точке среды, воспринимаемые как шум.

Основную частоту шума вращения винта, имеющего z лопастей, nppi скорости вращения п (об/мин) определяют по формуле (16). Частоты остальных гармоник кратны этой основной частоте, т. е. f2 = 22; f3 = 3f1 и т. д.

Звуковая мощность шума вращения также зависит от окружной скорости.

В различных турбомашинах (вентиляторах, компрессорах и т. д.) шум вращения значительно ниже по интенсивности, чем вихревой шум и шум от неоднородности, и поэтому может не учитываться.

Одним из самых мощных источников шума является свободная струя (см. рис. 43, в). Шум струи создается в результате турбулентного перемешивания частиц воздуха или газа, имеющих большую скорость истечения, с частицами окружающего воздуха, скорость которых меньше. Эти шумы являются преобладающими при работе реактивных двигателей, при выбросе сжатого воздуха или пара в атмосферу.

Звуковая мощность струи (Вт) зависит главным образом от скорости истечения vc, а также от диаметра отверстия (сопла) Dc и плотности воздуха или газов р:

где к — коэффициент подобия.

Снижение шума струи в источнике представляет большую сложность. Уменьшением градиента скорости в струе, что сделано, в частности, в двухконтурных авиационных двигателях, достигается снижение шума на 5 дБ.

Установка на срезе сопла различных насадок, действие которых основано на трансформации спектра шума (перевод спектра в высокочастотную область и даже в ультразвук), снижает шум на 8—12 дБ. Нужно отметить, что такие насадки могут ухудшать рабочие характеристики струи из-за высокого сопротивления.

В потоках, движущихся со сверхзвуковой скоростью, возникают аэродинамические шумы, обусловленные появлением скачков уплотнения (ударных волн). При движении тела со сверхзвуковой скоростью возникает явление звукового удара или хлопка, например, при полете сверхзвуковых самолетов. При истечении газа в атмосферу со сверхзвуковой скоростью происходят колебания скачков с возникновением резкого дискретного шума.

В большинстве случаев меры по ослаблению аэродинамических шумов в источнике оказываются недостаточными, поэтому дополнительное, а часто и основное снижение шума достигается путем звукоизоляции источника и установки глушителей.

В насосах источником шума является кавитация жидкости, возникающая у поверхности лопастей при высоких окружных скоростях и недостаточном давлении на всасывании.

Меры борьбы с кавитационным шумом — это улучшение гидродинамических характеристик насосов и выбор оптимальных режимов их работы.

Электромагнитные шумы. Шумы электромагнитного происхождения возникают в электрических машинах и оборудовании. Причиной этих шумов является главным образом взаимодействие ферромагнитных масс под влиянием переменных во времени и пространстве магнитных полей, а также пондеромоторные силы, вызываемые взаимодействием магнитных полей, создаваемых токами.

Снижение электромагнитного шума осуществляется путем конструктивных изменений в электрических машинах, например, путем изготовления скошенных пазов якоря ротора. В трансформаторах необходимо применять более плотную прессовку пакетов, использовать демпфирующие материалы.

При работе электрических машин возникает также аэродинамический шум (в результате вращения ротора в газовой среде и движения воздушных потоков внутри машины) и механический шум, обусловленный вибрацией машины из-за неуравновешенности ротора, а также от подшипников и щеточного контакта. Хорошая притирка щеток может уменьшить шум на 8—10 дБ.

Изменение направленности излучения шума. В ряде случаев величина показателя направленности (ПН) достигает 10—15 дБ, что необходимо учитывать при проектировании установок с направленным излучением, соответствующим образом ориентируя эти установки по отношению к рабочим местам. Например, выхлоп сжатого воздуха, отверстие воздухозаборной шахты вентиляционной или компрессорной установки должны располагаться так, чтобы максимум излучаемого шума был направлен в противоположную сторону от рабочего места или от жилого дома.

Рациональная планировка предприятий и цехов, акустическая обработка помещений. Как видно из выражения (12), шум на рабочем месте может быть уменьшен увеличением площади S, что может быть достигнуто увеличением расстояния от источника шума до расчетной точки.


РЕФЕРАТ

Пневматические устройства играют важную роль в механизации производства. В последнее время они также широко используются при решении задач автоматизации.

Пневматические устройства в системах автоматики выполняют следующие функции:

Получение информации о состоянии системы с помощью входных элементов (датчиков);

Обработка информации с помощью логико-вычислительных элементов (процессоров);

Управление исполнительными устройствами с помощью распределительных элементов (усилителей мощности);

Совершение полезной работы с помощью исполнительных устройств (двигателей).

КОМПРЕССОР, ПНЕВМОЦИЛИНДР, РАСПРЕДЕЛИТЕЛЬ, УСИЛИЕ, СКОРОСТЬ, ДАВЛЕНИЕ, РАСХОД, НОМОГРАММА.


ВВЕДЕНИЕ

В настоящее время все чаще для автоматизации производственных процессов и отдельных операций используется новая отрасль техники - мехатроника, которая включает в себя совокупность механических, гидравлических, пневматических, электронных элементов. Широкое распространение в последнее время получает пневмоавтоматика благодаря ряду существенных достоинств пневмосистем: легкое управление исполнительными механизмами, сравнительно большая скорость рабочего перемещения и др. Электрогидравлические и электропневматические системы автоматического управления получают все более широкое распространение в самых различных областях техники, включая робототехнические и автоматизированные комплексы машиностроительной, космической, авиационной, химической, пищевой, атомной и других отраслей промышленности. Сочетая в себе известные достоинства электрической связи и управления с быстродействием и относительной легкостью мощных гидро- и пневмоприводов, эти системы вытесняют чисто механические и электрические системы управления и контроля.

Технический прогресс в области создания материалов, способов конструирования и производства способствует улучшению качества и увеличению разнообразия пневматических устройств, что послужило основой для расширения области их применения как средств автоматизации.

Для реализации прямолинейного движения часто используют пневмоцилиндры, т.к. они характеризуются низкой стоимостью, легкостью монтажа, простотой и прочностью конструкции, а также широким диапазоном основных параметров.


ПНЕВМАТИЧЕСКИЕ ИСПОЛНИТЕЛЬНЫЕ УСТРОЙСТВА

Пневматические исполнительные устройства предназначены для преобразования энергии сжатого воздуха в механическое линейное перемещение или вращение. Они используются для приведения в движение рабочих органов машин, выполнения различных основных и вспомогательных операций. Линейное перемещение обеспечивается пневмоцилиндрами, поворотное движение - исполнительными устройствами, имеющими в качестве рабочего органа лопасть или шестерню с рейкой,

В пневмоцилиндрах одностороннего действия давление сжатого воздуха действует на поршень только в одном направлении, в обратную сторону поршень со штоком перемещается под действием пружины или внешних сил. Пневмоцилиндры с пружинным возвратом используют для выполнения небольших перемещений и с небольшими развиваемыми усилиями, так как встроенная пружина, сжимаясь, значительно снижает усилие, развиваемое поршнем.

В пневмоцилиндрах двустороннего действия перемещение поршня со штоком под действием сжатого воздуха происходит в прямом и обратном направлениях.

Поворотные пневмодвигатели могут быть поршневыми и лопастными,

Кроме названных выше типов, в промышленности используются также пневмоустройства специального назначения. К ним относятся бесштоковые цилиндры, позиционные цилиндры, пневмокаретки, цилиндры с полым штоком, с тормозом и пневмозахваты.

В процессе монтажа, наладки и эксплуатации пневматических исполнительных устройств необходимо предусматривать ряд конструктивных мер безопасности.

Чтобы свести к минимуму риск нанесения травм персоналу, рекомендуется применять защитные ограждения.

При высокой скорости движения рабочего органа устройства или в случае больших инерционных нагрузок, собственный демпфер пневмодвигателя может оказаться недостаточным для смягчения удара. Для снижения скорости рабочего органа до включения собственного демпфера рекомендуется использовать схемы замедления или устанавливать наружные демпферу, ослабляющие удар. В последнем случае конструкция должна обладать достаточной жесткостью.

Во избежание травм персонала, повреждения оборудования и объектов производства, необходимо предусматривать конструктивные меры, обеспечивающие соблюдение безопасности при падении давления. Такие меры особенно необходимы в системах с подвешенными грузами и в подъемно-транспортных механизмах.

Если пневмопривод управляется с помощью трехпозиционных пневмораспределителей, у которых в нейтральном положении все выходы сообщены с выхлопом, или возобновляет работу после того, как давление в пневмосистеме было сброшено, возможен резкий рывок рабочего органа с места и затем его движение с чрезмерно высокой скоростью. Это обусловлено тем, что в одну полость цилиндра подано высокое давление, в то время как в другой полости давление отсутствует, и нет никакого противодействия движению поршня, которое обычно бывает при вытеснении воздуха из полости пневмоцилиндра. В этих случаях необходимо предусматривать меры против резких рывков - например, применяя устройства плавной подачи воздуха.

Все виды нагрузок на шток поршня должны быть приложены только в осевом направлении. Неизбежные боковые нагрузки, приложенные к концу штока, не должны превышать значения, допустимые для каждого типа пневмоцилиндра. Не рекомендуется использовать пневмоцилиндр как амортизатор.

Если в пневмоцилиндре есть воздушный демпфер, он может работать только при условии, что шток доходит до своего крайнего положения. Поэтому, если длина хода поршня определяется какими-либо внешними ограничителями, необходимо убедиться, что демпфирование действительно имеет место.

Если пневмоцилиндр должен работать при полностью открытом клапане воздушного демпфера, необходимо выбрать тип цилиндра, снабженный резиновым демпфером. Не рекомендуется эксплуатировать привод с завинченным до упора регулировочным винтом демпфера, так как это может привести к повреждению уплотнения цилиндра.

Прежде чем затягивать резьбовое соединение на конце штока требуется привести его в полностью утопленное положение. При затяжке шток не должен вращаться.

При техническом обслуживании оборудования необходимо, прежде всего, убедиться, что в результате отключения питания не произойдет падение транспортируемых объектов или узлов оборудования, находящихся в поднятом или неустойчивом положении. Только после этого можно отключать электрическое и пневматическое питание, обязательно удостоверившись в том, что давление в системе полностью сброшено.

1. Свойства воздуха

Рабочим телом для исполнительных устройств электропневмоавтоматики служит сжатый воздух, представляющий собой смесь из азота и кислорода (по объему примерно 78% и 21%, соответственно) и других газов, содержащихся в небольших количествах (аргон, углекислый газ и др.), а также водяного пара.

Основными и наиболее распространенными параметрами сжатого воздуха являются температура, давление и удельный объем (или плотность).

Давление представляет собой силу, действующую по нормали к поверхности тела и отнесенную к единице площади этой поверхности.

Атмосфера Земли на ее поверхности развивает давление в одну физическую атмосферу. Давление, отсчитываемое сверх величины атмосферного давления, называется избыточным или манометрическим и указывается в технических характеристиках пневматических устройств.

Полное давление равно сумме избыточного и атмосферного давления:

Полное давление газа пропорционально его абсолютной температуре Т и концентрации молекул n , которую можно определить как отношение;

где N - число молекул, находящихся в сосуде; V - объем сосуда.

Давление р газа равно:

.

Коэффициент пропорциональности представляет собой постоянную Больцмана, равную:

.

Чаще известен объем V сосуда и масса т заключенного в нем воздуха. В предположении, что воздух является идеальным газом (отсутствует межмолекулярное взаимодействие), давление р внутри сосуда может быть определено по формуле Клапейрона:

,

где R - универсальная газовая постоянная (для воздуха R =287 Дж/кг К), которая равна внешней работе, совершаемой при постоянном давлении одним килограммом воздуха при нагревании его на 1 градус; Т -температура в градусах Кельвина (абсолютная температура).

Нулевая температура по Цельсию в физике

.

Если концентрация газа в сосуде равна нулю, то полное давление в таком сосуде тоже равно нулю. Можно считать, что на поверхности Земли сосуд обладает некоторой потенциальной энергией, так как весь окружающий ею воздух находится под атмосферным давлением и, входя в сосуд, может совершить работу.

Так работают многие вакуумные устройства, например, вакуумные приводы, вакуумные присоски и т.п. Говорят, что эти устройства работают на разрежение.

Сосуд будет также обладать потенциальной энергией, если давление газа внутри него будет больше атмосферного (т.е. p и >0). Здесь газ также может совершить работу, но уже при выходе из сосуда в атмосферу, т.е. привести в действие устройства, работающие на нагнетание.

Поскольку большинство устройств промышленной электропневмоавтоматики работает на нагнетание, а магистральное давление существенно больше атмосферного, при расчете усилий удобно пользоваться избыточным давлением. В термодинамических расчетах пользуются полным давлением.

В системе СИ единицей измерения давления служит паскаль (Па). Паскаль равен давлению, вызываемому силой в 1Н (ньютон), равномерно распределенной по нормальной к ней поверхности площадью 1 м 2 (I Па = 1 Н/м 2).

Соотношения между единицами давления приведены в таблице 2.

Таблица 2. Соотношение между единицами давления

Единицы

кГс/см 2

Бар

Па

р si

мм рт.ст.

1 кГс/см 2

0,98

9,81 10 -4

14,22

735,6

1 Бар

1,02

10 5

14,5

750,3

1 Па

1.02 10 -5

10 -5

1,45 10 -4

7,5 10 -3

1 р si (фунт-сила/кв.дюйм)

0,07

0.07

6,9 10 -3

51,71

1 мм рт.ст.

1,36 10 -4

133,3 10 -3

133,3

19,34 10 -3

1 мм вод.ст

10 -4

9,81 10 -5

9,81

1,42 10 -3

7,36 10 -2

2. Основные термодинамические законы

Во многих случаях уравнения состояния идеальных газов в пневмоавтоматике можно использовать с достаточной точностью и для реальных газов.

Бойлем в 1662 г. в Англии, а затем независимо от него Мариоттом в 1676 г. во Франции было установлено, что если газ занимал некоторый первоначальный объем V 0 и имел давление р о , то послесжатия до объема V 1 его давление p 1 , при условии, что температура газа не изменяется (изотермический процесс), повысится до величины, при которой произведение начального объема и давления будет равно произведению конечного объема и давления (рисунок 1,а);

.

Французским ученым Ж. Шарлем в 1787 г. было установлено, что если газ занимает постоянный объем (изохорный процесс), то при увеличении или уменьшении первоначальной температуры газа внутри постоянного объема первоначальное давление, соответственно, увеличится или уменьшится пропорционально изменению температуры (рисунок 1,б):

,

откуда

.

При неизменном давлении (изобарный процесс) нагревание или охлаждение первоначального объема газа приводит, соответственно, к возрастанию или уменьшению объема пропорционально изменению температуры в градусах Кельвина:

.

Это было установлено Ж. Гей-Люссаком в 1802 году.

При адиабатном процессе нет теплообмена между системой и окружающей средой. Приближенно можно считать адиабатным процесс в нетеплоизолированной системе, если он осуществляется столь быстро, что теплообмен между системой и окружающей средой практически не успевает происходить. Адиабатный процесс описывается уравнением

где k - показатель адиабаты, равный отношению теплоемкости газа при постоянном давлении р к теплоемкости газа при постоянном объеме V .

Изотермический, изобарный, изохорный и адиабатный процессы являются частными случаями политропного процесса (от греч. многообразный). Этот процесс описывается уравнением

где n - показатель политропы: при n = k - процесс политропный; при n =0 -

процесс изобарный; при n =1-изотермический; при n =±?-изохорный.

3. Истечение сжатого воздуха через отверстие

1

Основными соотношениями, необходимыми для описания работы пневматических устройств, являются соотношения, описывающие законы движения воздуха. Принимается, что воздух является идеальной жидкостью, т.е. такой жидкостью, в которой частицы перемешаются одна относительно другой без трения. Предположим, что движение установившееся и свойства жидкости в данном сечении остаются постоянными, т.е. давление и температура не изменяются. Обозначим через c , p , g , ? , z , соответственно, скорость движения жидкости, давление, ускорение силы тяжести, плотность жидкости и высоту над плоскостью отсчета. Уравнение Бернулли в дифференциальной форме, выражающее закон сохранения энергии, записывается в виде:

.

Интегрирование этого уравнения дает выражение закона движения жидкости:

.

Величина Н - постоянная интегрирования, представляет собой полный

напор, развиваемый движущейся жидкостью. Он равен сумме напоров скоростного, пьезометрического и геометрического. Учитывая низкую плотность воздуха, величиной z обычно пренебрегают. Поэтому.

.

Для идеальной жидкости запас энергии в каждом сечении потока остается неизменным. У реальных жидкостей, имеющих трение, запас энергии от сечения к сечению по направлению потока убывает. Уравнение для реальной жидкости между двумя произвольными сечениями потока имеет вид:

.

Обычно гидравлические потери Н 12 принимают пропорциональными изменению кинетической энергии, т.е.

,

где величина ? называется коэффициентом гидравлических потерь; с - средняя скорость в сечении потока.

В случае истечения воздуха из резервуара с достаточно большими размерами (рисунок 2) скоростью воздуха перед отверстием можно пренебречь и тогда

.

Рисунок 2

Величина называется коэффициентом скорости.

В каналах пневматических сопротивлений скорость течения воздуха сравнительно велика, и поэтому, с достаточной степенью точности можно считать, что теплообмен между протекающим воздухом и стенками канала отсутствует и, следовательно, истечение происходит по адиабатическому закону. Поэтому, можно записать: F -площадь сечения А-А; ? 2 -плотность воздуха в сечении А-А.


.

В полученном выражении за плотность воздуха в сечении отверстия площадью F принята плотность в среде, куда происходит истечение.

На самом деле плотность воздуха в этом сечении иная. Выравнивание плотности воздуха в струе с плотностью воздуха окружающей среды происходит в сечении Б-Б, расположенном на некотором расстоянии от отверстия. При этом площадь сечения Б-Б меньше площади отверстия F . Отношение сжатого сечения к расчетному называют коэффициентом сжатия струи. Произведение коэффициента сжатия на коэффициент скорости называют коэффициентом расхода ? . Таким образом, для уточнения в формулу для определения расхода G m вместо ? следует Рисунок 3

ввести ? .

На практике приходится рассчитывать расход воздуха не для отверстия с тонкими стенками, а для различных видов дросселирующих сопротивлений, имеющих более сложную конфигурацию, В этих случаях коэффициент расхода определяют экспериментально, и он является поправочным коэффициентом, учитывающим геометрию дросселя.

Расход (рисунок 3) имеет максимальное значение при

.

Показатель адиабаты k для воздуха равен 1,4, следовательно, ? кр = 0,528.

Момент равенства ?=? кр соответствует в канале дросселирующего сопротивления скорости течения воздуха, равной скорости звука. Экспериментально показано, что если в дальнейшем понижать давление р 2 , то расход G m -давление в полости до подводящего отверстия; р i -1 -давление в полости за подводящим отверстием; G кр - критическое значение массового расхода, определяемое по формуле

,

где d -диаметр подводящего отверстия.

Максимальная погрешность при таком определении расхода равна 3,4%.

Список литературы

1. Электропневмоавтоматика в производственных процессах: Учебное пособие; под редакцией Е.В. Пашкова. – 2-е издание, переработанное и дополненное. – Севастополь: издательство СевНТУ, 2003. -496с., ил.

2. Расчет пневмоприводов: Справочное пособие. Е.В. Герц, Г.В. Крейнин. – Москва: «Машиностроение», 1975. -274с.

Для снижения шума могут быть применены следующие методы: разработка шумобезопасной техники; уменьшение шума в источнике; изменение направленности излучения шума; рациональная планировка предприятий и цехов; акустическая обработка помещений; уменьшение шума на пути его распространения; проведение организационно-технических мероприятий; применение средств индивидуальной защиты.

Огромное значение по ограничению воздействия шума на работающих придается вопросу разработки новых образцов шумобезопасных машин. С этой целью ГОСТ 12.1.003-83 предусматривает установление в стандартах и (или) технических условиях на машины предельных значений их шумовых характеристик (в обоснованных случаях технически достижимых характеристик) с указанием их в паспорте машины, руководстве (инструкции) по эксплуатации или другой сопроводительной документации. Аналогичные требования предъявляются к предельно допустимым значениям ультразвуковой характеристики машин.

Уменьшение шума в источнике – наиболее рациональное средство борьбы с шумом.

Шум механизмов возникает вследствие упругих колебаний как всей машины в целом, так и отдельных ее частей. Причины возникновения этих колебаний - механические, аэро-, гидродинамические и электрические явления, определяемые конструктивными и технологическими особенностями машины, а также условиями ее эксплуатации. В связи с этим различают шумы механического, аэро-, гидродинамического и электромагнитного происхождений.

Снижение механического шума, возникающего вследствие вибрации поверхностей машин и оборудования, а также одиночных или периодических ударов в сочленении деталей, сборочных единиц или конструкций в целом, достигается, в первую очередь, улучшением конструкции оборудования: заменой возвратно-поступательного движения в узлах работающих механизмов равномерно вращательным; применением вместо прямозубых шестерен косозубых и шевронных, а также повышением класса точности обработки их поверхности; заменой по возможности зубчатых и цепных передач клиноременными и зубчато-ременными (снижение шума на 10-14 дБ); заменой подшипников качения на подшипники скольжения (снижение шума на 10-15 дБ); использованием металлов с большим внутренним трением; заменой, где это возможно, металлических деталей деталями из пластмасс.

Эффективно (особенно для высоких тонов) применение демпфирования, при котором колеблющаяся поверхность покрывается материалом с большим внутренним трением (резина, пробка, битум, войлок и др.). Основными требованиями, предъявляемыми к демпфирующим материалам, должны быть высокая эффективность, малая масса, способность прочно удерживаться на металле и предохранять его от коррозии.

Аэродинамические шумы возникают при истечении сжатого воздуха или газа из отверстий, пульсации давления при движении потоков воздуха или газа в трубах или при движении в воздухе тел с большими скоростями, горении жидкого или распыленного топлива в форсунках; гидродинамические – при гидравлических ударах, турбулентности потока, кавитации. Причиной аэро- и гидродинамических шумов являются, соответственно, стационарные или нестационарные процессы в газах или жидкостях. Снижение аэро- и гидродинамических шумов достигается прежде всего уменьшением скорости обтекания и улучшением аэро- и гидродинамики тел, что приводит к уменьшению вихреобразования в струях, а также путем звукоизоляции источника и установки глушителей.

Электромагнитные шумы возникают вследствие колебаний элементов электромеханических устройств под влиянием переменных магнитных сил – колебания статора и ротора электрических машин, сердечника трансформатора и др. Снижение электромагнитного шума осуществляется путем конструктивных изменений в электрических машинах.

Изменением направленности излучения шума достигают его снижения на 10-15 дБ, что следует учитывать при проектировании установок с направленным излучением. Например, труба для сброса сжатого воздуха компрессорной установки должна располагаться таким образом, чтобы максимум излучаемого шума был направлен в противоположную от рабочего места сторону.

Ослаблению производственного шума способствует рациональная планировка предприятий и цехов. Шумные цехи размещают с подветренной стороны по отношению к жилому поселку и менее шумным цехам и на достаточном удалении от них. Разрывы между шумными цехами и другими зданиями полезно озеленять, так как листва деревьев - хороший поглотитель шума. Шумящие агрегаты по возможности концентрируют на одном участке цеха и звукоизолируют. При невозможности обеспечения звукоизоляции для защиты персонала от прямого шумоизлучения применяют акустические экраны, облицованные звукопоглощающими материалами, а также звукоизолированные кабины наблюдения и дистанционного управления.

Интенсивность шума в помещениях зависит не только от прямого, но и от отраженного звука. Уменьшение энергии отраженных волн за счет увеличения эквивалентной площади звукопоглощения называется акустической обработкой помещения. Это достигается путем размещения на внутренних поверхностях помещения звукопоглощающих облицовок, а также установки в помещении штучных звукопоглотителей, изготавливаемых из пористых материалов. Звуковая энергия, проникая в толщу материала, трансформируется в тепловую. Этот процесс происходит за счет вязкого трения воздуха в узких порах рыхлого материала.

В настоящее время применяют следующие звукопоглощающие материалы (коэффициент звукопоглощения на средних частотах больше 0,2): ультратонкое стекловолокно, минеральную вату, древесно-волокнистые и минераловатные плиты, пористый поливинилхлорид и др.

Установка звукопоглощающих облицовок снижает шум по суммарному уровню на 6-8 дБ в зоне отраженного звука и на 2-3 дБ вблизи источника шума.

Уменьшение шума на пути его распространения применяется тогда, когда рассмотренными выше методами невозможно или нецелесообразно достичь требуемого снижения шума. В этом случае снижение шума может быть достигнуто путем установки звукоизолирующих преград в виде стен, перегородок, кожухов, кабин, причем эффективность таких преград возрастает с увеличением частоты шума.

Сущность звукоизоляции состоит в том, что падающая на ограждение энергия поглощается и отражается в гораздо большей степени, чем проникает за ограждение.

Звукоизолирующие преграды, как правило, имеют гладкую поверхность. При одной и той же толщине звукоизолирующей преграды эффект звукоизоляции возрастает с увеличением числа слоев материала, но при условии отсутствия жесткой связи между слоями.

Организационно-технические мероприятия по защите от шума должны включать:

Применение малошумных технологических процессов (изменение технологии производства, способа обработки и транспортирования материала, например, замена клепки пневмоинструментами на гидравлические или сварные процессы, штамповки – на прессовку, ручной правки металла – на вальцовку);

Оснащение шумных машин средствами дистанционного управления и автоматического контроля, вынесение шумных операций и производств в отдельные помещения или цеха.

Совершенствование технологии ремонта и обслуживания машин;

Установка на оборудовании и конструкциях шумопоглощающих экранов и покрытий, снижающих уровень шума на 5-12 дБ;

Обозначение знаками безопасности зон с уровнем звука или эквивалентным уровнем звука выше 80 дБА, обеспечение средствами индивидуальной защиты работающих в этих зонах;

Использование рациональных режимов труда и отдыха работников на шумных предприятиях – сокращение времени нахождения в зонах с повышенным уровнем шума, устройство кратковременных перерывов в тихих помещениях в течение рабочего дня для восстановления функций слуха, совмещение профессий (в условиях шума и вне его действия) и др.

Проведение предварительных и периодических медицинских осмотров, а аудиометрических исследований и контроля за артериальным давлением. К работе в шумных условиях не допускаются лица с заболеваниями органа слуха и нервной системы.

Средствами индивидуальной защиты от шума являются вкладыши, наушники и шлемофоны.

Вкладыши вставляют в наружный слуховой проход, они бывают мягкие (эластичные и волокнистые) и твердые. Первые изготавливают из губки, ваты, марли, ультратонкой стекловаты (иногда их пропитывают маслами, воском, смолами, парафином); вторые – из пластмасс, эбонита, резины.

Вкладыши являются самыми дешевыми и компактными средствами защиты от шума, однако недостаточно эффективными (снижение шума на 5-20 дБ) и в ряде случаев неудобными, так как раздражают слуховой проход. Наушники, вкладыши – «беруши», антифоны, шлемофоны снижают проникновение шума в ухо на 10-50 дБ

Наушники плотно облегают ушную раковину и удерживаются дугообразной пружиной (могут встраиваться в головной убор). Степень ослабления шума зависит от конструкции наушников и частоты шума, причем наибольший эффект наблюдается на высоких частотах, что необходимо учитывать при их использовании.

Шлемы применяют при воздействии шумов с уровнями более 120 дБ, так как в этом случае шум действует непосредственно на мозг человека (через черепную коробку) и вкладыши и наушники не обеспечивают необходимой защиты.

Шумовые характеристики

В зависимости от физической природы шумы могут быть:

· механического происхождения , возникающие при вибрации поверхностей машин и оборудования, а также при одиночных или периодических ударах в сочленениях деталей или конструкциях в целом;

· аэродинамического происхождени я , возникающие вследствие происходящих в газах процессов (вихревых процессов, колебания рабочей среды, вызываемых вращением лопаточных колес, пульсации давления при движении в воздухе тел с большими скоростями; истечения сжатого воздуха, пара или газа и др.);

· электромагнитного происхождения , возникающие вследствие колебаний элементов (ротора, статора, сердечника, трансформатора и др.) электромеханических устройств под действием переменных магнитных полей;

· гидродинамического происхождения , возникающие вследствие происходящих в жидкостях процессов (гидравлических ударов, кавитации, турбулентности потока и др.).

В условиях эксплуатации, как правило, несложно определить, какой именно источник вызывает повышенный шум. Если, например, в жилой дом проникает шум от одновременно работающих компрессорной и вентиляторной установок рядом расположенного предприятия, то последовательным выключением этих установок и измерением шума каждой из них можно выявить основной источник шума.

Для выполнения акустического расчета прежде всего необходимо знать основные шумовые характеристики машин:

ü уровни звуковой мощности (УЗМ) на стандартных среднегеометрических частотах октавных полос (L P ):

L р = 10∙ lg P / P 0 ,

где Р – звуковая мощность источника, Вт; P 0 – исходное значение мощности, равное 10 -12 Вт);

ü показатель направленности излучения шума (G ):

G = 10∙1 g Ф ),

где Ф – фактор направленности излучения шума.

Шумовые характеристики, определяемые в соответствии с ГОСТ 12.1.024 – 81, ГОСТ 12.1.025 – 81 и др., приводятся заводом-изготовителем в технической документации на стационарные машины и оборудование. Для таких распространенных источников шума, как вентиляторные, компрессорные, газотурбинные и другие аэрогазодинамические установки, шумовые характеристики могут быть рассчитаны или определены по справочной литературе /30/.

При отражении звуковых волн, падающих на какую-либо поверхность, в той или иной мере происходит поглощение звуковой энергии, которую несут волны. В результате этого поглощения отраженная волна имеет меньшую амплитуду, чем падающая. Отношение отраженной энергии (E отр ) к падающей (E пад )

β = E отр. / E пад

называется коэффициентом отражения звука ; отношение же поглощенной энергии к падающей коэффициентом поглощения данной поверхности

α = (E пад – E отр.) / E пад .

Между коэффициентами отражения звука и поглощения данной поверхности существует связь, которая описывается соотношением:

α = 1 – β .

При коэффициенте звукопоглощения, равном нулю, вся падающая на конструкцию звуковая энергия отражается без поглощения и, наоборот, падающая энергия полностью поглощается, если коэффициент звукопоглощения равен единице. Коэффициент звукопоглощения конструкции зависит от частоты падающих волн и от угла их падения.

Звукопоглощающую конструкцию можно характеризовать удельным импедан сом звукопоглощающей конструкции являющимся отношением звукового давления (p ) на поверхности конструкции к нормальной составляющей колебательной скорости воздуха (V n ) на этой же поверхности:

Z = p / V n .

Для учета фазовых соотношений давление и скорость берутся здесь в комплексной форме и, таким образом, импеданс является комплексной вели чиной :

Z = R + i X,

где R и X – соответственно действительная (активная) и мнимая (реактивная) составляющие импеданса.

Пористостью материала называется безразмерная величина, равная отношению объема воздушных пор к общему объему материала. При этом учитывается лишь объем сквозных пор; замкнутые поры, не имеющие сообщения с наружным воздухом, не принимают участия в поглощении звука. У применяемых обычно звукопоглощающих материалов пористость лежит в пределах от 0,6 до 1.

Сопротивление продуванию является весьма важной характеристикой пористого материала. Оно определяется из следующего соотношения:

где P – разность воздушных давлений по обе стороны слоя пористого материала, продуваемового потоком воздуха; V – скорость воздушного потока вне материала; h – толщина слоя пористого материала.

Сопротивление продуванию (r ), отнесенное ко всей толщине пористого слоя, называется полным сопротивлением продуванию (r 1 ) и может быть определено как

r 1 = r h .

Полное сопротивление продуванию (r 1 ) находит наибольшее применение при характеристике акустических свойств тонких пористых слоев (например, ткани, сетки и т.п.), у которых относить сопротивление к единице толщины не имеет смысла.

Вентиляторные установки

Шум вентиляторов промышленных предприятий обычно распространяется следующими путями:

ü через воздухозаборное устройство 4 (рис. 5.1, а) воздуховода всасывания 2 (путь I);

ü через выбросное устройство 5 (рис. 5.1, б) воздуховода нагнетания 3 (путь II);

ü через корпус радиального вентилятора 1 (рис. 5.1, а, путь III) и выбросное или воздухозаборное устройства (пути II и I).

Возможно также излучение шума открытым входным или выходным патрубками радиального вентилятора и осевым вентилятором непосредственно в атмосферу. Шум вентиляторных установок часто превышает допустимые уровни в широком диапазоне частот. В каждом из этих случаев октавные УЗМ могут быть рассчитаны по соответствующим формулам. Например, октавные УЗМ шума, излучаемого вентилятором в воздуховод всасывания или нагнетания, определяют по формуле:

L p = L + 20 lg P в + 10 lg Q + δ – ΔL 1 + ΔL 2 – 20 ,

где L – критерий шумности, дБ, зависящий от типа и конструкции вентилятора, значение которого для сторон всасывания и нагнетания следует принимать по данным /30, 31/; Р в – полное давление, создаваемое вентилятором, Па; Q – объемный расход воздуха вентилятора, м 3 /с; δ – поправка на режим работы вентилятора, принимаемая в зависимости от его КПД, равной от 0 до 4 дБ; L 1 – поправка, учитывающая распределение звуковой мощности вентилятора по октавным полосам частот; Δ L 2 – поправка, учитывающая акустическое влияние присоединения воздуховода к вентилятору.


Поправки Δ L 1 и Δ L 2 могут быть определены по данным /30/.

Для осевых вентиляторов УЗМ шума на всасывании и нагнетании ввиду симметрии потока могут быть приняты одинаковыми. Уровень шума электродвигателя, клиноременного привода и подшипников при их исправном состоянии значительно ниже шума вентилятора и его можно не учитывать.

Значения УЗМ справедливы при условии плавного подвода воздуха к входному патрубку, что обеспечивается наличием плавного коллектора или прямого участка воздуховода длиной не менее трех его гидравлических диаметров (D г ):

D г = 4F / П ,

здесь F – площадь воздуховода, м 2 , П – его периметр, м.

При работе радиального вентилятора с открытыми входным или выходным патрубками к излучаемому через них шуму добавляется шум, излучаемый через корпус. Суммарный УЗМ находят по известному правилу сложения уровней. Для вентиляторов специального назначения, в частности общеобменной вентиляции шахт, рудников, транспортных тоннелей, УЗМ могут быть определены по измерениям, проведенным на моделях этих вентиляторов (для проектируемых машин) или по данным литературы (для эксплуатируемых машин).

Компрессорные станции

При работе стационарных компрессорных станций проникновение шума в окружающую среду происходит через отверстия всасывающих и выхлопных воздуховодов, а в передвижных станциях, кроме того, имеется еще шум двигателя и корпусной шум. Нужно заметить, что компрессорные станции наряду с вентиляторными установками являются самыми распространенными источниками шума. Уровни звуковой мощности шума, излучаемого в окружающую среду стационарными компрессорами и турбокомпрессорами, определяют по справочной литературе /15/.

Шум расположенных в жилых застройках передвижных компрессорных станций (ПКС), в которых имеется большое количество источников шума, принято характеризовать не уровнем звуковой мощности, а уровнем звука на определенном (1…7 м) расстоянии от станции.

Газовые струи

Интенсивный шум в окружающей среде может создаваться при испытаниях турбореактивных двигателей (ТРД), при сбросе сжатого воздуха. Источником шума в этих случаях является высокоскоростная выхлопная струя, общий уровень звуковой мощности (L P общ ) которой можно определить по формуле:

L P общ = 80 lg V c + 20 lg ρ с + 10 lg F c – K,

где V c – скорость истечения газа (воздуха) из сопла, м/с; ρ с – плотность струи в выходном сечении сопла; F c – площадь сечения сопла, м 2 ; К – величина, зависящая от температуры струи.

При испытаниях ТРД излучение шума происходит несколькими путями: из выхлопной шахты испытательного бокса 1 (рис. 5.2), из шахт подсоса 2 и всасывания 3, а также через проводящую трубу 4. В шахты подсоса и всасывания поступает часть звуковой энергии, излучаемой в помещение бокса выхлопной струей.

Октавные УЗМ шума, излучаемого в выхлопную шахту, определяют по формуле:

L p = L P общ + Δ L P .

Здесь Δ L P – разность между общим УЗМ и рассматриваемой октавной полосой со среднегеометрической частотой f, значение которой определяется в зависимости от безразмерного параметра – числа Струхаля:

Sh = fd / v c ,

где d c – диаметр сопла, м.

Необходимо отметить, что при расчете шума ТРД (особенно двухконтурных с большой степенью двухконтурности), проникающего в шахту всасывания, наряду с выхлопной струей нужно учитывать и шум компрессора.

Источники шума в жилых и общественных зданиях

Шумы, проникающие в помещение, могут быть внешними и внутренними . Внутренние шумы, возникающие в самих зданиях, могут быть подразделены на бытовые и механические , связанные с работой инженерного и санитарно-технического оборудования (лифтов, вентиляторов, насосов и т.п.). Бытовые шумы создаются проживающими в доме людьми: громкий разговор, крики и плач детей, пение, игра на музыкальных инструментах. Уровни шума вблизи этих источников могут достигать довольно высоких значений: звучание очень громкой музыки создает уровень шума в 80…90 дБ, громкий разговор и плач детей – 70…80 дБ, разговор средней громкости – 60…65 дБ.

При разработке средств защиты от шума, прежде всего, следует выяснить его вид. Различают два вида шумов – воздушный и структурный . Воздушный шум распространяется в воздухе от источника возникновения до места наблюдения, структурный шум излучается поверхностями колеблющихся конструкций стен, перекрытий, перегородок зданий в звуковом диапазоне частот 20…20 000 Гц.

От наружного источника 1 (рис. 5.3) воздушный шум проникает в помещения через закрытые или открытые окна, форточки, а также стены (в меньшей степени); вибрации передаются по грунту или трубопроводам, идущим к строительным конструкциям, колебания которых вызывает появление структурного шума. От внутреннего источника 2 воздушный шум попадает в помещения через стены и перекрытия, воздуховоды, а также через проемы, щели и т.п.; вибрации передаются основанию, трубопроводам насосных и воздуховодам вентиляционных установок, вызывая возникновения структурного шума.

Необходимость проведения мероприятий по снижению шума, производимого эксплуатируемыми источниками, определяется на основании измерений:

ü уровня звукового давления (L );

ü эквивалентного уровня звука (L A экв );

ü максимального уровня звука (L A max )

и сравнением с допустимыми по нормам.

Для проектируемых объектов необходимость таких мероприятий может быть определена только на основании акустического расчета, включающего:

1) выявление источников шума и определение их шумовых характеристик;

2) выбор расчетных точек (РТ) акустического расчета и определение для них допустимых УЗД;

3) определение ожидаемых уровней звукового давления (УЗД) в расчетных точках до осуществления мероприятий по снижению шума

4) определение требуемого снижения УЗД в расчетных точках;

5) выбор мероприятий для обеспечения требуемого снижения;

6) расчет и проектирование шумоглушащих, звукопоглощающих и звукоизолирующих конструкций (глушителей, экранов, звукопоглощающих облицовок и т.п.).



Рассказать друзьям