Вестерн блоттинг ошибки при выполнении. ОФС.1.7.2.0022.15 Определение подлинности и чистоты иммунобиологических лекарственных препаратов методом вестерн-блот. Анализ электрофоретического разделения белков

💖 Нравится? Поделись с друзьями ссылкой

После того как ДНК, РНК или белки разделены, они должны быть перенесены на твердую подложку для детекции и других операций, которые в геле идут с трудом. Процесс переноса, приводящий к иммобилизации молекул , т.е. закреплению в неподвижном состоянии, называется блоттингом (по англ. – blotting ). В качестве подложки используются нейлоновые или нитроцеллюлозные мембраны.

Блоттинг (от англ. blotting – промокание) – это метод перенесения электрофоретических фрагментов ДНК на специальную пленку (мембрану) из нитроцеллюлозы, связывающую (иммобилизующую) одноцепочечные молекулы ДНК.

Саузерн-блоттинг (по фамилии предложившего его автора) основан на перемещении фрагментов ДНК благодаря капиллярному эффекту. Процесс переноса фрагментов ДНК, находящихся в агарозном геле, на пленку из нитроцеллюлозы с помощью фильтровальной бумаги похож на промокание.

Анализ проводят следующим образом:

– Выделенную, очищенную, денатурированную и разбитую на фрагменты ДНК помещают на лист агарозного геля, где происходит электрофоретическое разделение фрагментов по массе и заряду.

– Лист агарозного геля помещают на фильтровальную бумагу, смоченную концентрированным солевым (буферным) раствором.

– Затем на гель накладывают нитроцеллюлозный фильтр, где происходит иммобилизация (или адсорбция, или фиксация) одноцепочечных фрагментов ДНК.

– Поверх фильтра накладывают стопку листов сухой фильтровальной бумаги, которая обеспечивает медленный ток буферного раствора через гель (т.е. служит своеобразным капиллярным насосом). Солевой раствор, проходя через агарозный гель, увлекает за собой фрагменты ДНК, которые задерживаются нитроцеллюлозой и связываются с ней, а раствор впитывается сухой фильтровальной бумагой.

– Далее ДНК денатурируют щелочью, а фильтр выдерживают в вакууме при температуре 80 0 С, в результате чего одноцепочечные фрагменты ДНК необратимо иммобилизуются (фиксируются) на нитроцеллюлозе. При этом расположение полос иммобилизованной ДНК точно соответствует их расположению в геле.

– ДНК, связанную с фильтром, помещают в раствор с меченым ДНК зондом, в котором и происходит гибридизация. Гибридизироваться (образовывать водородные связи) со специфическим зондом будут только комплементарные ему фрагменты ДНК, которые можно обнаружить в виде светлых полос на рентгеновской пленке, т.е. радиоавтографии нитроцеллюлозного фильтра

Дот-блоттинг . Для приготовления дот-блоттов препарат ДНК или РНК наносят непосредственно на фильтр. Капельки препарата выглядят в виде точек на фильтре, что объясняет название типа блоттинга (англ. dot –точка). 1) Из геномной ДНК, предварительно обработанной ультразвуком, образуются фрагменты длиной 5–10 пар нуклеотидов.


2) Чтобы сделать ДНК- или РНК-пробы доступными зонду, их нужно денатурировать, т.е. перевести в одноцепочечную форму. Это происходит под воздействием температуры 100 °С.

3) Денатурированные нуклеиновые кислоты инкубируют на льду: быстрое понижение температуры предотвращает их ренатурацию, т.е. комплементарное спаривание цепей. Денатурированную ДНК или РНК наносят непосредственно на фильтр, который инкубируют в растворе, содержащем зонд.

4) Чтобы анализируемая нуклеиновая кислота не перешла в раствор, ее необходимо зафиксировать на фильтре (мембране). Для этого используют два типа фильтров: нитроцеллюлозный и нейлоновый.

Для иммобилизации нуклеиновых кислот на нитроцеллюлозном фильтре используют прожаривание при 80 °С в вакууме, а на нейлоновом фильтре – УФ-облучение в течение 3–5 минут.

5) После инкубации препарата нуклеиновых кислот с меченым изотопом зондом проводят радиоавтографию в специальной кассете или идентификацию нерадиоактивными методами.

Дот-блоттинг позволяет ответить только на один вопрос: есть ли в данном образце искомая последовательность нуклеотидов.

Нозерн-блотт анализ применяется:

1) для выделения и анализа РНК (например, для выяснения того, присутствует ли в данном типе клеток мРНК, считанные с данного гена, т.е. экспрессируется ген или нет;

2) для определения количества этой РНК и его изменения в развитии данного типа клеток;

3) для определения размера транскрипта какого-то гена.

В данном случае молекулы РНК, выделенные из клетки, разделяются по размерам с помощью гель-электрофореза, а затем переносятся на фильтр. После гибридизации с меченым одноцепочечным зондом выявляются места гибридизации (гомологии) РНК и зонда.

Если нуклеотидная последовательность искомого гена (или мРНК) не известна, но известен белок, синтез которого он контролирует, то можно выделить небольшое количество чистого белка, определить аминокислотную последовательность некоторой его части (достаточно знание 5–6 аминокислотных остатков). Пользуясь таблицей генетического кода, можно установить все возможные последовательности нуклеотидов в том участке мРНК (или самого гена), который кодирует данную аминокислотную последовательность. В этом случае можно синтезировать зонд для поиска нужных клонов в библиотеке генов.

Вестерн-блоттин г (иммуноэлектроблоттинг, белковый блоттинг) –это метод идентификации уникальных белков. В его основе лежит явление высокоспецифичного взаимодействия антиген–антитело. Таким образом, антигеном (мишенью) является определяемый белок, а зондом – антитело к нему.

Антитела к исследуемому белку получают различными способами. Наиболее простым является введение очищенной пробы белка в кровяное русло лабораторного животного (обычно кролика). В его организме вырабатываются антитела (иммуноглобулины) к данному чужеродному белку. Это первичные антитела, которые и будут взаимодействовать с белком-мишенью.

Однако было бы не рационально вводить метку для идентификации непосредственно в данные антитела. Для определения разных белков потребовалось бы метить разные антитела, что привело бы к их высокой стоимости. Более разумным оказалось использование универсальных антител конъюгированных антииммуноглобулинов , являющихся, по сути, антителами к антителам, выработанным при использовании идентифицируемого белка как антигена. К примеру, конъюгированные антииммуноглобулины к Ig кролика будут взаимодействовать со всеми иммуноглобулинами, синтезированными у кролика к разным антигенам. Таким образом, именно такие универсальные вторичные антитела несут изотопную или нерадиоактивную метку. Кроме неизотопной метки, которая в ходе ряда реакций приводит к образованию нерастворимого окрашенного соединения (как в случае блоттинга нуклеиновых кислот), очень часто используют хемилюминесцентную метку, обладающую более высокой чувствительностью.

1) Экстракция белков из гомогената

2) Разделение белков по молекулярным массам с помощью SDS-электрофореза в полиакриламидном геле (ПААГ). Метод SDS-электрофореза подразумевает денатурацию нативных белков. Таким образом, молекулы белка, обладающие одинаковой молекулярной массой, пройдут в геле одинаковый путь и выстроятся в виде полосы. Поскольку в смеси присутствуют белковые молекулы разного размера, образуется множество полос. Визуализировать результаты электрофореза можно окрашиванием белка (кумасси бриллиантовый синий, амидо черный, окрашивание серебром). Окрашивание серебром обладает уникальной чувствительностью, что позволяет определить всего 0,1 нг белка в полученной полосе. Это очень важно для контроля количества белка, нанесенного на гель.

3) Перенос белков из геля на мембрану. Это делается потому, что полиакриламид не позволяет диффундировать большим молекулам иммуноглобулинов к белку. А иммобилизованный на мембране белок становится доступным антителам. В отличие от блоттинга нуклеиновых кислот перенос белка на мембрану происходит под воздействием электрических сил, т.е. в электрическом поле.

4) Полученный блот инкубируют с антисывороткой к белку, а затем с антииммуноглобулинами. Результат визуализируют в соответствии с используемым типом метки.

Ограничения:

1) большой размер исследуемых фрагментов, значительно превосходящий длину ДНК-зондов и препятствующий прямому молекулярному анализу;

2) невозможность произвольного выбора концов изучаемых последовательностей, определяющихся наличием соответствующих сайтов рестрикции в исходной молекуле ДНК;

3) необходимость большого количества хорошо очищенной высокомолекулярной геномной ДНК (не менее 10 мкг на одну реакцию, что равноценно 0,5-1 мл крови),

4) для геномной гибридизации - наличие радиоактивных ДНК-зондов с высокой удельной активностью не менее 109 имп./мин*мкг), действующих ограниченный промежуток времени, и специально оборудованного изотопного блока. К тому же длительная экспозиция автографов значительно удлиняет время получения результатов.

5) большая трудоемкость исследований

И в других естественно-научных дисциплинах.

Другие сходные методы используют антитела для определения белков в тканях и клетках посредством иммуноокрашивания и иммуноферментного анализа (ИФА , англ. ELISA ).

Вестерн-блоттинг был разработан в лаборатории Джорджа Старка (англ. George Stark ) в Стэнфорде . Название вестерн блот было дано технике У. Нейлом Бурнеттом (англ. W. Neal Burnette ) и является игрой слов от названия Саузерн блоттинг , - методики определения ДНК , разработанной ранее Эдвином Саузерном. Аналогичный метод определения РНК называется нозерн блоттингом, детекция посттрансляционных модификаций белков называется истерн блоттингом (англ. Eastern blotting ).

Подготовка образца

Образец может быть взят из цельной ткани или из клеточной культуры. В большинстве случаев, твёрдые ткани сначала измельчаются механически с использованием блендера (для образцов большого объёма), с использованием гомогенизатора (меньшие объемы), или обработки ультразвуком . При этом бактерии, вирусы и другие компоненты окружающей среды также являются источником белков.

Гель-электрофорез

Белки разделяются при помощи электрофореза в полиакриламидном геле. Разделение белков можно производить по изоэлектрической точке (pI), молекулярной массе , электрическому заряду или по сочетанию этих параметров.

Наиболее распространенный способ разделения белков - электрофорез в полиакриламидном геле в присутствии додецилсульфата натрия (англ. SDS ) по Лэммли. SDS вызывает денатурацию белков и поддерживает их в денатурированном состоянии, для разрушения вторичных и третичных структур белков используют восстановители дисульфидных связей, например, дитиотреитол и меркаптоэтанол. Денатурированные полипептиды мигрируют в электрическом поле через акриламидный гель к аноду , при этом белки меньшего размера двигаются быстрее и, таким образом, разделяются в соответствии с молекулярной массой. Концентрация акриламида определяет разрешающую способность геля - чем выше концентрация акриламида, тем лучше разрешение низкомолекулярных белков. Низкая концентрация акриламида улучшает разрешающую способность для высокомолекулярных белков. Также возможно использование двухмерного электрофореза (2-D). В таком случае разделение белков производят в двух направлениях - в соответствии с их изоэлектрической точкой в первом направлении, и в соответствии с молекулярной массой - во втором.

Образцы на гель наносят в карманы. Как правило, одну из «дорожек» оставляют для маркеров молекулярной массы (смеси белков с известными массами). После подачи напряжения белки двигаются в электрическом поле с различной скоростью. Отличия в скорости продвижения - электрофоретической подвижности приводит к разделению белков на полосы (англ. bands ).

Перенос на мембрану

Чтобы сделать белки доступными для антител и дальнейшей детекции, их вместе с полоской геля переносят на мембрану, изготовленную из нитроцеллюлозы или поливинилиденфторида (англ. PVDF ). Мембрана накладывается поверх геля, а поверх неё кладут стопку фильтровальной бумаги. Всю стопку помещают в буфер для переноса, который продвигается верх по бумаге под действием капиллярных сил, уносит с собой белки. Другой метод переноса белков называется электроблоттингом и использует электрический ток, который переносит белки из геля на мембрану. Белки перемещаются из геля на мембрану с сохранением своего расположения. В результате этого «промакивания» (от. англ. blotting ) процесса белки удерживаются на тонком поверхностном слое мембраны для детекции. Оба варианта мембран используют из-за их свойства неспецифично связывать белки. Связывание белков основано как гидрофобных взаимодействиях, так и на электростатических взаимодействиях между мембраной и белком. Нитроцеллюлозная мембрана дешевле PVDF, но гораздо более хрупкая и хуже выдерживает повторное нанесение меток.

Единообразие и общая эффективность переноса белков из геля на мембрану может быть проверена окрашиванием мембраны красителями Coomassie blue или Ponceau S. Coomassie наиболее распространенный из двух, а краситель Ponceau S обладает большей чувствительностью и лучше растворим в воде, что упрощает последующую отмывку и нанесение меток на мембрану.

Блокирование

Как только выбрана мембрана за её способность связывать белки, выбраны антитела и целевой белок, должны быть приняты меры по исключению взаимодействия между мембраной и антителом, используемым для детекции целевого белка (ибо антитело само по себе белок). Блокирование неспецифичных связываний достигается помещение мембраны в разбавленный раствор белка - обычно бычий сывороточный альбумин (BSA) или нежирное сухое молоко (оба недорогие), с небольшим процентом детергента типа Tween 20. Белок из разбавленного раствора прикрепляется к мембране во всех местах, где не прикрепился целевой белок. Поэтому, при добавлении антител, им (антителам) нет свободного места на мембране, куда бы они могли прикрепиться, кроме сайтов связывания на специфичных целевых белках. Этот фоновый «шум» в окончательном продукте вестерн блота приводит к чистым результатам и исключению ложно-положительных.

Детекция

Во время процесса детекции мембрана «метится» исследуемым белком с модифицированным антителом, которое связано с репортёрным ферментом, который выдерживается на соответствующей подложке, приводя к колориметрической реакции и давая цвет. В силу различных причин, детекция проводится в два этапа, хотя сейчас доступен одношаговый метод детекции для определенных областей применения.

Антитела вырабатывают, воздействуя на класс хозяйских или на культуру иммунных клеток некоторым белком (или его частью).Обычно это часть иммунного ответа, а здесь (в анализе) собранные антитела используются как специфичный и чувствительный инструмент детекции, который напрямую связывается с белком.

После блокирования разведенный раствор первичных антител (обычно между 0.5 и 5 мкг/мл) инкубируется с мембраной и слегка встряхивается. Обычно раствор состоит из забуференного раствора соли с небольшим процентным содержанием детергента, иногда с сухим молоком или BSA. Раствор антител и мембрана могут быть вместе закрыты и инкубированы где угодно от 30 минут до оставления на ночь. Также они могут быть инкубированы при различных температурах, при повышенной температуре наблюдается лучшее связывание - и специфичное (целевого белка, «сигнал1») и неспецифичное («шум»).

После полоскания мембраны для удаления несвязавшихся первичных антител, мембрану выдерживают в других антителах, напрямую связывающихся с класс-специфическими участками первичных антител. Они известны как вторичные антитела и в соответствии с их целевыми свойствами, как правило называются по типу «anti-mouse», «anti-goat», и так далее. Антитела получают из животного источника (или животных - источников культуры гибридом); анти-мышиные вторичные антитела будут связываться с большинством первичных антител, полученных из мышей. Это создает некоторую экономию, позволяя отдельной лаборатории использовать один источник массового производства антител, и ведет к намного более воспроизводимым результатам. Вторичные антитела обычно связывают с биотином или с репортёрным ферментом , таким как щелочная фосфатаза или пероксидаза хрена . Это значит, что несколько вторичных антител могут связываться с одним первичным и усиливать сигнал.

Наиболее распространенные, связанные с пероксидазой хрена вторичные антитела используются для разрезания хемилюминесцентного агента, и продукт реакции производит люминесцентное излучение пропорционально количеству белка. Лист светочувствительной фотографической пленки помещается напротив мембраны и подвергается действию излучения реакции, создавая изображение полос антител на блоте. Более дешевый, но менее чувствительный подход с использованием 4-хлоронафтольного окрашивания в смеси с 1 % перекисью водорода ; реакция пероксидного радикала с 4-хлоронафтолом дает темно-коричневое окрашивание, которое регистрируется без использования специальной фотографической пленки.

Третий альтернативный метод использует радиоактивную метку вместо фермента, связанного с вторичным антителом, такую как меченный антитело-связывающий белок типа Белка А Staphylococcus с радиоактивным изотопом йода. Другие методы безопаснее, быстрее и дешевле, поэтому радиоактивная детекция используется редко.

Исторически процесс нанесения меток проводится в два этапа, потому что относительно проще произвести первичные и вторичные антитела в раздельных процессах. Это дает исследователям и компаниям огромные преимущества в плане гибкости, и добавляет шаг амплификации в процесс детекции. Учитывая появление высоко-пропускного анализа белка и низкий порог обнаружения, все же наблюдается интерес к развитию системы-в-один-шаг для нанесения меток, которая позволяет процессу проходить быстрее и с меньшими затратами. Она (система-в-один-шаг) требует антител-меток, которые распознавали бы исследуемый белок и одновременно несли маркер для детекции - метки, наиболее доступные для известных «белковых хвостов». Сначала метки инкубируют с мембраной в стиле метода-в-два-шага с первичными антителами, а затем они готовы для прямой детекции после серии промывок.

Анализ

После отмывки несвязавшихся меток, вестерн блот готов к детекции зондов, связавшихся с целевым белком. На практике, не во всех вестернах обнаруживают белки лишь по одному бэнду на мембране. Приблизительный размер вычисляют сравнивая окрашенные бэнды с маркерами молекулярной массы, добавленными при электрофорезе. Процесс повторят с структурными белками, такими как актин или тубулин , которые не меняют между экспериментами. Количество целевого белка зависит от количества контрольного структурного белка между группами. Этот прием обеспечивает коррекцию количества общего белка на мембране в случае ошибки или неполного переноса.

Колориметрическая детекция

Метод колориметрической детекции основан на инкубации вестерн блота с субстратом, который реагирует с репортерным ферментом (таким как пероксидаза хрена , англ. horseradish peroxidase ), «сидящем» на вторичном антителе. Растворимый краситель переходит в нерастворимую форму другого цвета, осаждаясь рядом с ферментом и окрашивая мембрану. Рост пятна ограничивается смыванием растворимого красителя. Уровень количества белка оценивается денситометрически по интенсивности окрашивания или спектрофотометрически .

Хемилюминесцентная детекция

Метод хемилюминесцентной детекции основывается на инкубации нитроцеллюлозной мембраны с субстратом, который люминесцирует после взаимодействия с репортером вторичного антитела. Свет регистрируется фотопленкой или CCD -камерой, которая производит цифровую съемку вестерн блота. Изображение анализируется денситометрически, оценивая относительное количество окрашенного белка и даёт количественный результат в единицах оптической плотности. Новое программное обеспечение позволяет провести дальнейший анализ данных, например, определить молекулярный вес, если использовался соответствующий стандарт.

Радиоактивная детекция

Радиоактивные метки не нуждаются в ферментных субстратах, а позволяют помещать медицинскую радиографическую плёнку напротив вестерн блота, давая ей (плёнке) возможность взаимодействовать с метками и создавая тёмные участки, которые соответствуют полосам иследуемого белка (на изображении справа). Востребованность методов радиоактивной детекции снижается из-за их дороговизны, высокого риска для здоровья и безопасности и альтернатив, предоставляемых ECL.

Флюоресцентная детекция

Флюоресцентные метки возбуждаются светом и излучают более длинноволновый свет, регистрируемый фотосенсорами, такими как CCD -камера, снабженная соответствующими фильтрами эмиссии. Камера делает цифровой снимок вестерн блота, позволяя проводить дальнейший анализ полученных данных, такой как анализ молекулярного веса и количественный вестерн блот анализ.

Вестерн - блот (иногда называемый иммуноблот белок ) является широко используемым аналитическим методом используется в молекулярной биологии , иммуногенетики и других молекулярной биологии дисциплин для определения специфических белков в образце гомогената ткани или экстракта.

Вкратце, образец подвергают денатурации белка, а затем гель - электрофореза . Синтетические или животного происхождения антитела (известный в качестве первичного антитела) , который создается распознает и связывается со специфическим белком - мишенью. Электрофорез мембрану промывают в растворе, содержащем первичное антитело, перед тем избыток антитела смывается. Вторичное антитело добавляют, который распознает и связывается с первичным антителом. Вторичное антитело визуализировали с помощью различных методов, таких как окрашивание, иммунофлюоресценции, а также радиоактивности, что позволяет косвенное обнаружение специфического белка - мишени.

Другие родственные методы включают дот - блот анализ, количественную дот - блота , иммуногистохимический и иммуноцитохимию , где антитела используются для обнаружения белков в тканях и клетках иммунной метки и иммуноферментный анализ (ELISA).

Название вестерн - блот это игра на eponymously названием Southern - блот , методика ДНК обнаружения разработан ранее Edwin Southern . Кроме того, обнаружение РНК называют северным кляксу и был разработан Джеймсом Alwine, Дэвид Кемп и Джордж Старк в Стэнфорде . Термин «вестерн - блот» был дан в технике У. Нил Бернетт, хотя сам метод возник в лаборатории Гарри Towbin в .

Приложения

Вестерн - блот широко используется в биохимии для качественного определения одиночных белков и белков-модификаций (например, пост-трансляционной модификации). Он используется в качестве общего метода, чтобы определить наличие определенного одного белка в сложной смеси белков. Полуколичественная оценка белка может быть получена из размера и цвета интенсивности полосы белка на блот - мембране. Кроме того, применение серии разведений очищенного белка известных концентраций может быть использовано, чтобы позволить более точную оценку концентрации белка. Вестерн - блот обычно используется для проверки продукции белка после клонирования . Он также используется в медицинской диагностике, например, в тесте на ВИЧ или BSE -TEST.

Подтверждающий тест на ВИЧ использует вестерн - блот для обнаружения анти-ВИЧ антитела в организме человека в сыворотке образца. Белки из известных ВИЧ -infected клеток разделены и нанесены на мембрану, как описано выше. Затем сыворотка для тестирования применяется в стадии инкубации первичного антитела; свободное антитело вымывает, а вторичное антитело против человеческого связан с сигналом фермента добавляется. Окрашенные полосы затем показывают белки, к которым сыворотка пациента содержит антитело.

Западный блот также используются в качестве окончательного теста для Крейтцфельда-Якоба , типа заболевания приона, связанного с потреблением загрязненной говядины от крупного рогатого скота с бычьей губчатой энцефалопатией (BSE, обычно упоминаются как «коровье бешенство»).

Другое применение в диагностике туляремии. Оценка способности вестерн-блот для выявления антител против F. tularensis показал, что его чувствительность составляет почти 100%, а специфичность 99,6%.

колориметрическое обнаружение

Метод обнаружения колориметрического зависит от инкубации вестерна - блоттинга с субстратом, который взаимодействует с ферментом - репортера (например, пероксидаза) , который связан с вторичным антителом. Это превращает растворимый краситель в нерастворимую форму другого цвета, который выпадает в осадок рядом с ферментом и, таким образом окрашивает мембрану. Развитие блото затем останавливает вымывание растворимой краситель. Уровни белка оценивали с помощью денситометрии (как интенсивное пятно) или спектрофотометрии .

Хемилюминесцентное обнаружение

Хемилюминесцентные методы обнаружения зависит от инкубации вестерн - блоттинга с субстратом, который будет люминесцировать при воздействии репортера на вторичного антитела. Свет затем детектируется ПЗС - камер, которые захвата цифрового изображения на вестерн - блоттинга или фотопленки. Использование пленки для обнаружения Вестерн - блот постепенно исчезает из - за отсутствия линейности изображения (не точной количественной оценки). Изображение анализируется с помощью денситометрии, который оценивает относительное количество белка окрашивания и количественно результаты с точки зрения оптической плотности. Следующее программное обеспечение позволяет дальнейший анализ данных, такие как анализ молекулярного веса, если используются соответствующие стандарты.

Описание

Метод определения Иммуноблот (Western blot)

Исследуемый материал Сыворотка крови

Доступен выезд на дом

Развернутое исследование антител класса IgM к антигенам боррелий методом Вестерн-блота. Диагностика ранних стадий Лайм борреллиоза основана преимущественно на характерных клинических признаках (мигрирующая эритема). Но у 20-45% больных возможна безэритемная форма заболевания. Диагностика в таких ситуациях по клиническим признакам практически невозможна. Серологические методы исследования часто помогают поставить правильный диагноз, хотя информативность серологического тестирования боррелиоза, к сожалению, ограничена. Определение антител класса IgM методом ИФА при серологической диагностике боррелиозной инфекции часто дает неясные результаты. У части пациентов отмечают длительное персистирование IgM антител, которые таким образом не всегда отражают свежую инфекцию. На поздней стадии боррелиоза положительный результат исследования IgM не дает никакой дополнительной информации. Распространенность антител к боррелиям в нормальной популяции зависит от региона и у людей, работающих в лесной зоне, может составлять до 40%. Антитела класса IgM иногда могут быть обнаружены спустя годы после возникновения инфекции или после лечения антибиотиками. Причина ложноположительных результатов часто остается невыясненной. В то же время, отрицательный результат по IgM не исключает наличия свежей инфекции, у части пациентов с текущей инфекцией отмечают серонегативность (отрицательный результат при исследовании специфических IgM и/или IgG). Нередки случаи расхождения результатов тестирования антител к Borrelia burgdorferi тест-системами разных производителей, что зависит от специфичности используемых антигенов и чувствительности систем. Таким образом, в диагностике боррелиоза часто возникает потребность в дополнительном серологическом исследовании, которое может дать более подробную информацию при неясной клинической картине или вызывающих сомнение результатах исследования IgM и IgG методом ИФА. Исследование IgM антител к боррелиям методом Вестерн-блота позволяет дать развернутый ответ по наличию антител к 10 различным антигенам боррелий, включая специфичный антиген OspC p25, являющийся маркером свежей инфекции. Обнаружение IgM антител против различных специфичных антигенов боррелий, при отсутствии антител к OspC, не считается достаточным указанием на недавно возникшую инфекцию. Для установления диагноза свежей боррелиозной инфекции полученный положительный результат по IgM-антителам следует подтвердить через 3-6 недель положительным результатом по антителам класса IgG на свежевзятом образце крови. Источник антигенов в данном тесте - белки из экстракта специально подобранного штамма Borrelia afzelii и рекомбинантный антиген VisE. Специфичность антигенов:

VisE Экспрессированная основная вариабельная белково-подобная последовательность Специфичен
83 кДа Белок мембранных везикул р83 Специфичен
39 кДа BmpA, p 39 Специфичен
31 кДа OspA, p 31 Специфичен
30 кДа p 30 Специфичен
25 кДа OspC, p 25, маркер свежей инфекции Специфичен
21 кДа p 21 Специфичен
19 кДа p 19 Специфичен
17 кДа p 17 Специфичен
Распространенность положительного результата исследования антител класса IgM к боррелиям методом Вестерн-блота у клинически охарактеризованных пациентов c боррелиозом и здоровых доноров крови:

Литература

1. Долгих Т. И. Современные возможности лабораторной диагностики инфекционных заболеваний (методы, алгоритмы, интерпретация рзультатов). Омск: 2005. - 40 с.
2. Информационно-методическое письмо «Профилактика и диагностика клещевых боррелиозов» № 17-22/65 17 мая 2005 г. Территориальное управление федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека по городу Москве».
3. Clinical relevance of different IgG and IgM antibody responses to Borrelia bugdorferi after antibiotic therapy for erythema migrans. Long-term follow-up study of 113 patients. - Arch.dermatol. 2006, vol. 142, p. 862-868.
4. Nau R.. Christen H-J., Eiffert H. Lyme Disease—Current State of Knowledge. - Dtsch Arztebl Int. 2009; 106(5): 72-82
5. Материалы фирмы- производителя реагентов (Euroimmun).

Подготовка

Формат выдачи результата: качественный (описание наличия/отсутствия полос, характеризующих выявление антител к каждому из указанных антигенов в форме «положительно» или «отрицательно»; общее заключение о результате исследования в форме: «положительный»/«отрицательный»/«неопределенный»).

Референсные значения: отрицательный.

Интерпретация результатов

Положительный. Антитела класса IgM обнаружены. Обнаружение IgM антител против различных специфичных антигенов боррелий, при отсутствии антител к OspC, не считается достаточным указанием на недавно возникшую инфекцию. Для установления диагноза свежей боррелиозной инфекции полученный положительный результат по IgM-антителам следует подтвердить через 3-6 недель положительным результатом по антителам класса IgG на свежевзятом образце крови.

Отрицательный. Антитела класса IgM не обнаружены. Отрицательный результат по IgM не исключает полностью вероятности наличия свежей инфекции. При имеющихся клинических подозрениях на клещевой боррелиоз, целесообразно повторить исследование на специфические IgM и IgG антитела через 3-4 недели.

Неопределенный. По полученным результатам исследования (слабая полоса антигена OspC, отсутствие других положительных полос по специфичным антигенам) нельзя дать определенное заключение о наличии IgM антител к боррелиям. При имеющихся клинических подозрениях на клещевой боррелиоз целесообразно повторить исследование через 3-4 недели.

Вестерн блоттинг

Профессор кафедры биохимии
и молекулярной биологии,
Д.м.н. Спирина Людмила
Викторовна
Вестерн блоттинг

Определение. Вестерн-блоттинг
(вестерн-блот,

аналитический
метод,
используемый для
определения
специфичных
белков в образце.

Определение. Вестерн-блоттинг (вестерн-блот, белковый иммуноблот, Western bloting)

Определение. Вестерн-блоттинг
(вестерн-блот,
белковый иммуноблот, Western bloting)
Вестерн-блоттинг был разработан в лаборатории
Джорджа Старка (Стенфорд, Великобритания)
Название вестерн-блот было дано технике У.
Нейлом Бурнеттом и является игрой слов от
названия Саузерн Блоттинг (Southern blotting). методики определения ДНК, разработанной
ранее Эдвином Саузерном

Вестерн-блоттинг был разработан в лаборатории Джорджа Старка (Стенфорд, Великобритания)

Western Blotting –
метод определения
белков
Саузерн блоттингметодики
определения ДНК,
разработанной
ранее Эдвином
Саузерном Southern
blotting).
Аналогичный метод
определения РНК
называется Нозерн
Блоттинг (Nothern
blotting).
Детекция
посттрансляционных
модификаций белков
называется Истерн
Блоттингом (Eastern
blotting).

протокол. ПРОТОКОЛ

ПРОТОКОЛ
1. Разделение белков
методом SDS-PAGE гельэлектрофореза/
С помощью гель-электрофореза
белки разделяются в
полиакриламидном геле.
2. Перенос белков на
мембрану
3. Блокирование и Детекция
Затем их детектируют с
использованием антител:
сначала белки связываются с
первичными (моно- или
поликлональными) антителами,
которые в свою очередь
связываются
со вторичными антителами,
конъюгированными с ферментами
(пероксидазой хрена или
щелочной фосфатазой).

протокол. Вестерн-блоттингом можно обнаруживать антиген в количествах менее 1нг.

протокол.
Вестерн-блоттингом можно обнаруживать
антиген в количествах менее 1нг.
4. Визуализация.
Высокая степень
разрешения достигается за
счет электрофоретического
разделения белков и
специфичности
моноклональных антител.
Визуализация
исследуемого белка
достигается путем
проведения
соответствующей
биохимической реакции с
образованием продукта,
который определяется
колориметрическим,хемилюминесцентным,
флюоресцентным методами
детекции.

5. Анализ.

Количество белка оценивается с
помощью денситометрии.

Southern Blotting Этим методом выявляют уникальные фрагменты ДНК, размер которых составляет приблизительно одну миллионную часть геном

Геномную ДНК (обычно
выделенную из
лейкоцитов или клеток
плода) расщепляют на
короткие фрагменты,
разделяют их в агарозном
геле, переносят на
мембрану, после чего
идентифицируют
специфические участки с
помощью гибридизации с
олигонуклеотидными
зондами.

Nothern Blotting

Аналог Southern Blotting.
Этот метод позволяет выявить специфическую
мРНК и оценить ее размер.

Eastern Blotting (является продолжением метода Вестерн блоттинг)

Определение метода Вестерн Блоттинг

Метод основан на
комбинации гельэлектрофореза и
иммунохимической
реакции «антигенантитело».

«Твердая фаза» для иммуноблота

пористые материалы типа
нитроцеллюлозы (PVDF) в виде
наполнителей в объеме или в виде
плоских листов или полосок стрипов
(англ. strip); стрипы используют в
методиках типа иммуноблота и
иммунохроматографии;
в пористых материалах существенно
больше площадь, на которой
сорбирован один из участников
взаимодействия; другие реагенты
диффундируют по порам.

Типы твердой фазы для Вестерн блоттинга

Подготовка образца

Образец может быть взят из цельной
ткани или из клеточной культуры. В Цельная ткань
Клеточная культура
большинстве случаев, твёрдые ткани
сначала измельчаются механически
с использованием блендера (для
образцов большого объёма), с
Механическое измельчение
использованием гомогенизатора
(меньшие объемы), или
обработки ультразвуком.
Различные детергенты детергенты,Измельчение гомогенизатором
соли и буферы могут быть
применены для
улучшения лизиса клеток и
растворения белков.
Обработка ультразвуком
Ингибиторы протеаз и фосфатаз част
о добавляются для предотвращения
расщепления образцов их
Измельчение в жидком азоте
собственными ферментами.
Подготовка тканей часто
выполняется при низких
температурах, чтобы
Ингибиторы протеаз, фосфатаз
избежать денатурации белка.
Условия, улучшающие
пробоподготовку
Детергенты, соли, буферы
производит гомогенизацию образцов за счет их встряхивания
в микропробирках или чашах вместе с твердыми шариками
Низкие температуры

Гель-электрофорез. Наиболее распространенный способ разделения белков - электрофорез в полиакриламидном геле в присутствии SDS по Лэмми

Гель-электрофорез. Наиболее
распространенный способ
разделения белков -
электрофорез в
полиакриламидном геле в
присутствии SDS по Лэмми

Гель-электрофорез

Гель-электрофорез
SDS вызывает
денатурацию белков
и поддерживает их в
денатурированном
состоянии, для
разрушения
вторичных и
третичных структур
белков используют
восстановители
дисульфидных
связей

Гель -электрофорез

Подлежащие
анализу белки в
присутствии
додецилсульфата
натрия приобретают
одинаковый
отрицательный
заряд, что делает
возможным их
разделение в
зависимости только
от молекулярной

Принцип электрофореза

Предварительно
денатурированные белки
вносят в карманы «треков»
(дорожек) акриламидного геля
с низкой концентрацией
(концентрирующий гель), что
позволяет их сконцентрировать
перед переходом в
разделяющий гель (с более
высокой концентрацией), где
происходит разделение белков
в зависимости от молекулярной
массы.
Белки мигрируют в
электрическом поле через
акриламидный гель к аноду,
при этом белки меньшего
размера двигаются быстрее.

Принцип электрофореза

Отличия в скорости
продвижения -
электрофоретической
подвижности приводит к
разделению белков на полосы.
Как правило, одну из
«дорожек» оставляют для
маркеров молекулярной массы
(смеси белков с известными
массами).

Окрашивание гелей

окрашивание белков в
гелях красителем
Кумасси
окрашивание белков в
гелях серебром
Для визуализации результатов электрофореза чаще
всего используют окрашивание белков в гелях
красителем Кумасси или серебром

В большинстве случаев результаты
электрофоретического разделения достаточно
получить путем визуальной оценки геля.
Однако, с целью получения достоверных данных и
надлежащего документирования результатов гель
сканируют на просвет при помощи высокочувствительного
денситометра, что позволяет надежно определять не
только положение белков в геле, но и оптическую
плотность белкового пятна.
Окрашивание
мембраны более
надежно

Анализ электрофоретического разделения белков, Блоттинг

С помощью специального программного приложения
можно определить такие параметры как
электрофоретическая подвижность белка, его
чистота, количество белка в пятне и др.
Чаще используют хемилюминесцентную систему
детекции белков – использование рентгеновских пленок
(Блоттинг)
Используют
программное
приложение ImageJ

Применение системы визуализации для WB (см. ниже)

Анализ электрофоретического разделения белков

Определение молекулярной массы исследуемого белка
предполагает необходимость калибровки геля по
молекулярным массам. Калибруют гель относительно
молекулярных масс белков-маркеров, которые
разделяют параллельно с исследуемым образцом.

Выбор % разрешающего геля.

концентрация
акриламида определяет
разрешающую
способность геля - чем
выше концентрация
акриламида, тем лучше
разделение
низкомолекулярных
белков. Низкая
концентрация
акриламида улучшает
разрешающую
способность гельэлектрофореза для
высокомолекулярных
Размер белка, kDa
%AA
36-205
5%
24-205
7.5%
14-205
10%
14-66
12.5%
10-45
15%

Перенос на мембрану Чтобы сделать белки доступными для антител и дальнейшей детекции, их вместе с полоской геля переносят на мембрану, изг

Перенос на мембрану
Чтобы сделать белки доступными для антител и дальнейшей детекции, их вместе с полоской
геля переносят на мембрану, изготовленную из нитроцеллюлозы или PVDF.
Мембрана накладывается поверх геля,
а поверх неё кладут стопку
фильтровальной бумаги.
Метод переноса белков
называется электроблоттингом и
использует электрический ток, который
переносит белки из геля на мембрану.
Белки перемещаются из геля на
мембрану с сохранением своего
расположения. В результате этого
«промакивания» (blotting) процесса
белки удерживаются на тонком
поверхностном слое мембраны для
детекции.
Оба варианта мембран используют изза их свойства неспецифично связывать
белки.
Связывание белков основано как
на гидрофобных взаимодействиях, так
и на электростатических
взаимодействиях между мембраной и
белком.
Нитроцеллюлозная мембрана дешевле
PVDF, но гораздо более хрупкая и хуже
выдерживает повторное нанесение
меток.

Виды электроблоттинга

Сухой
Влажный
Полусухой
(semidry)

Окрашивание белков на фильтре

Способ
окраски
Ponceau S
Чувствительность,
количество
белка
1-2µg
Нитроцеллюлоза
+
Нейлон
-
PVDF
+
Amido
Black
1.5µg
+
-
+
Comassie
blue
1.5µg
+
-
+
India ink
100ng
+
-
+
Biotinavidin
30ng
+
+
+
Colloidal
gold
3ng
+
-
+
Окрашивание
обратимое
постоянное, низкий фон
постоянное, высокий фон
постоянное
постоянное, бледнеет со
временем
постоянное

Подтверждение переноса белков на фильтр (окраска Ponceus)

Блокирование

Как только выбрана
мембрана, выбраны антитела
и целевой белок, должны
быть приняты меры по
исключению взаимодействия
между мембраной и
антителом, используемым для
детекции целевого белка (ибо
антитело само по себе белок).
Блокирование
неспецифичных связываний
достигается помещением
мембраны в разбавленный
раствор белка - обычно это
бычий сывороточный
альбумин или нежирное
сухое молоко или желатин
с небольшим процентом
детергента типа Tween-20.
Блокирование – один из
важных этапов
проведения
эффективного Вестерн
блоттинга

Механизм блокирования

Белок
из разбавленного
раствора прикрепляется к
мембране во всех местах,
где не прикрепился целевой
белок. Поэтому, при
добавлении антител, им
(антителам) нет свободного
места на мембране, куда бы
они могли прикрепиться,
кроме сайтов связывания на
специфичных целевых
белках. Этот фоновый
«шум» в окончательном
продукте вестерн блота
приводит к чистым
результатам и
исключению ложно-

Детекция. Непрямой и прямой WB

преимущества
Вторичное антитело усиливает сигнал (несколько вторичных
антител могут связываться с одним первичным)
Имеется широкий выбор вторичных антител
Одно вторичное антитела может быть использовано для
детекции различных специфичных антител
связывание с ферментативной меткой вторичного антитела не
влияет на иммунореактивность первичного антитела
Замена вторичного антитела может способствовать изменению
метода детекции
недостатки
Вторичные антитела способствуют образованию сайтов
неспецифичного связывания
Дополнительные этапы работы
преимущества
необходимость использовать только
первичные антитела, что ускоряет процесс
возможность использовать первичные
антитела с разными метками
Недостатки
связывание с ферментативной меткой
может снижать иммунореактивность
первичного антитела
высокая стоимость первичных антител
проблема выбора антитела и низкий
сигнал

Детекция. Следующим этапом является реакция связывания исследуемого белка со специфическим антителом (первичным).

Раствор антител и мембрана
могут быть вместе закрыты и
инкубированы от 30 минут
до оставления на ночь.
Также они могут быть
инкубированы при
различных температурах,
при повышенной
температуре наблюдается
лучшее связывание.
После удаления
несвязавшихся первичных
антител, мембрану
выдерживают со вторичными
антителами и в соответствии
с их целевыми свойствами,
как правило называются по

Антитела для вестерн блоттинга. Механизм детекции.

Антитела получают из
животного источника и
связываются с
большинством первичных
антител. Вторичные
антитела обычно связывают
щелочной фосфатазой или
пероксидазой хрена.
Наиболее
распространенные,
связанные с пероксидазой
хрена вторичные антитела
используются для
разрезания
хемилюминесцентного
агента, и продукт реакции
производит люминесцентное
излучение пропорционально
количеству белка.
Лист светочувствительной
фотографической пленки
помещается напротив мембраны
и подвергается действию
излучения реакции, создавая
изображение полос антител на
блоте.
Более дешевый, но менее
чувствительный подход с
использованием 4хлорнафтольного окрашивания
в смеси с 1 % перекисью
водорода, что дает темнокоричневое окрашивание,
которое регистрируется без
использования специальной
фотографической пленки.

Другой метод детекции
вторичными антителами
использует антитела со
связанным флюорофором,
который излучает в
ближней инфракрасной
области (NIR). Свет,
излучаемый
флюоресцентным
красителем, постоянен и
делает флюоресцентную
детекцию более точным и
чувствительным способом
измерения разницы в
сигнале, производимом
белками, которые мечены
антителами, на вестерн
блоте.

Детекция. Другие методы детекции.

Третий альтернативный
метод использует
радиоактивную метку
вместо фермента,
связанного с вторичным
антителом (с
радиоактивным изотопом
йода). Другие методы
безопаснее, быстрее и
дешевле, поэтому
радиоактивная детекция
используется редко.

Визуализация.

Визуализация
осуществляется с
помощью гельдокументирующих
систем или цифровой
камерой.

Представление фильма

Stain free technology

На практике, не во всех
вестернах обнаруживают
белки лишь по одному бэнду
на мембране.
Приблизительный размер
вычисляют сравнивая
окрашенные бэнды с
маркерами молекулярной
массы, добавленными при
электрофорезе.
Процесс повторят с
структурными белками,
такими как актин или
тубулин, которые не
меняют между
экспериментами. Количество
целевого белка зависит от
количества контрольного
структурного белка между
группами. Этот прием
обеспечивает коррекцию
количества общего белка на
мембране в случае ошибки

Анализ и представление результатов.

Использование
программного
приложения Image
J.
Программного
приложение BioRad

ИГХ
Иммунная
флюоресценция
Вестерн
блоттинг

Применение метода

Вестерн-блоттинг
используется
в молекулярной
биологии, биохимии, гене
тике и в других
естественно-научных
дисциплинах.
В медицине:
диагностика ВИЧ
(СПИД), болезнь
лайма,Helicobacter
Pylori, вирус ЭпштейнБарр

Полный протокол

1. электрофорез
2. перенос
3. блокирование
4. инкубация с
первичным антителом
5.отмывка
6.инкубация со
вторичным антителом
7. отмывка
8. обработка
хемилюминесцентной
системой детекции
9. детекция с помощью
рентгеновской пленки
10. анализ

Применение в практической медицине

Подтверждение
инфицированности ВИЧ
Диагностика клещевого
боррелиоза (болезнь Лайма)
Диагностика сибирской язвы
Диагностика токсоплазмоза
(Т);
группу инфекций –
гепатиты, сифилис,
хламидиоз, листериоз и др.
(О);
краснуху (R);
цитомегаловирусную
инфекцию (С);
герпес (Н).
Вирус Эпштейн-Барр
В этом случае на тестовые стрип-мембраны нанесены
только
клинически
значимые
антигены
(нативные,
синтетические или рекомбинантные) в определенном
порядке. Такой подход используют для дифференциальной
диагностики нескольких инфекций на одном стрипе

Рассказать друзьям