С увеличением частоты ультразвука длина волны. Физические свойства ультразвука. Влияние влажности и температуры

💖 Нравится? Поделись с друзьями ссылкой

Раздел физики ультразвука довольно полно освещен в ряде современных монографий по эхографии. Мы остановимся лишь на некоторых свойствах ультразвука, без знания которых невозможно понять процесс получения ультразвуковой визуализации.

Скорость ультразвука и удельное волновое сопротивление тканей человека (по В.Н. Демидову)

Ультразвуковая волна, достигнув границы двух сред, может отразиться или пойти дальше. Коэффициент отражения ультразвука зависит от разности ультразвукового сопротивления на границе раздела сред: чем больше эта разность, тем сильнее степень отражения. Степень отражения зависит от угла падения луча на поверхность раздела сред: чем больше угол приближается к прямому, тем сильнее степень отражения.

Таким образом, зная это, можно найти оптимальную ультразвуковую частоту, которая дает максимальную разрешающую способность при достаточной проникающей способности.

Основные принципы, на которых основано действие ультразвуковой диагностической аппаратуры , — это распространение и отражение ультразвука .

Принцип работы диагностических ультразвуковых приборов заключается в отражении ультразвуковых колебаний от границ раздела тканей, обладающих определенной величиной акустического сопротивления. Считается, что отражение ультразвуковых волн на границе раздела происходит при разности акустических плотностей сред не менее 1%. Величина отражения звуковых волн зависит от разности акустической плотности на границе раздела сред, а степень отражения – от угла падения ультразвукового луча.

Получение ультразвуковых колебаний

В основе получения ультразвуковых колебаний лежит прямой и обратный пьезоэлектрический эффект, сущность которого заключается в том, что при создании электрических зарядов на поверхности граней кристалла последний начинает сжиматься и растягиваться. Преимуществом пьезоэлектрических преобразователей является способность источника ультразвука служить одновременно и его приемником.

Схема строения ультразвукового датчика

Датчик содержит пьезокристалл, на гранях которого закреплены электроды. Сзади кристалла находится прослойка вещества, поглощающая ультразвук, который распространяется в направлении, противоположном требуемому. Это повышает качество получаемого ультразвукового луча. Обычно ультразвуковой луч, генерируемый датчиком, имеет максимальную мощность по центру, а по краям она снижается, в результате чего разрешающая способность ультразвука различна по центру и по периферии. По центру луча всегда можно получить устойчивые отражения как от более, так и от менее плотных объектов, тогда как по периферии луча менее плотные объекты могут давать отражение, а более плотные отражаться как менее плотные.

Современные пьезоэлектрические материалы позволяют датчикам посылать и принимать ультразвук в широком диапазоне частот. Возможно проведение контроля над формой спектра акустического сигнала, создавая и сохраняя гауссову форму сигнала, которая в большей мере устойчива к искажениям полосы частот и смещению центральной частоты.

В последних конструкциях ультразвуковых приборов высокая разрешающая способность и четкость изображения обеспечиваются использованием системы динамического фокуса и широкополосного эхофильтра фокусировки входящих и выходящих ультразвуковых лучей посредством микрокомпьютера. Таким образом обеспечиваются идеальное профилирование и улучшение ультразвукового луча и характеристик боковой разрешающей способности изображения глубоких структур, получаемых при секторном сканировании. Параметры фокусировки устанавливаются в соответствии с частотой и типом датчика. Широкополосный эхофильтр обеспечивает оптимальную разрешающую способность за счет идеального сочетания частот с учетом поглощения эхосигналов, проходящих через мягкие ткани. Использование многоэлементных датчиков высокой плотности способствует устранению ложных эхосигналов, появляющихся вследствие боковой и задней дифракции.

Сегодня в мире происходит жесточайшая конкуренция фирм по созданию качественных визуальных систем, отвечающих самым высоким требованиям.

В частности, корпорация «Acuson» установила особый стандарт качества изображения и клинической разновидности, разработала Платформу 128 ХР TM — базовый модуль для постоянных усовершенствований, которая позволяет врачам расширять сферу клинических исследований в зависимости от потребностей.

В Платформе используются 128 электронно-независимых каналов, которые можно задействовать одновременно как на передаче, так и на приеме, обеспечивая исключительное пространственное разрешение, контрастирование тканей и однородность изображения во всем поле обзора.

Ультразвуковые диагностические приборы делятся на три класса: одномерные, двухмерные и трехмерные.

В одномерных сканерах информация об объекте представляется в одном измерении по глубине объекта, а изображение регистрируется в виде вертикальных пиков. По амплитуде и форме пиков судят о структурных свойствах ткани и глубине участков отражения эхосигналов. Этот тип приборов используется в эхо-энцефалографии для определения смещения срединных структур мозга и объемных (жидкостных и плотных) образований, в офтальмологии — для определения размера глаза, наличия опухолей и инородных тел, в эхопульсографии – для исследования пульсации сонных и позвоночных артерий на шее и их интракраниальных ветвей и т.д. Для этих целей используется частота 0.88-1.76 МГц.

Двухмерные сканеры

Двухмерные сканеры делятся на приборы ручного сканирования и работающие в реальном режиме времени.

В настоящее время для исследования поверхностных структур и внутренних органов используются лишь приборы, работающие в реальном масштабе времени, в которых информация непрерывно отражается на экране, что дает возможность вести динамическое наблюдение за состоянием органа, особенно при исследовании движущихся структур. Рабочая частота данных приборов от 0.5 до 10.0 МГц.

На практике чаще применяются датчики с частотой от 2.5 до 8 МГц.

Трехмерные сканеры

Для их применения требуются определенные условия:

— наличие образования, имеющего округлую или хорошо контурированную форму;

— наличие структурных образований, находящихся в жидкостных пространствах (плод в матке, глазное яблоко, камни в желчном пузыре, инородное тело, полип в заполненном жидкостью желудке или кишечнике, червеобразный отросток на фоне воспалительной жидкости, а также все органы брюшной полости на фоне асцитической жидкости);

— малоподвижные структурные образования (глазное яблоко, простата и др.).

Таким образом, с учетом этих требований трехмерные сканеры с успехом могут быть применены для исследования в акушерстве, при объемной патологии брюшной полости для более точной дифференциации от других структур, в урологии для исследования простаты с целью дифференциации структурной пенетрации капсулы, в офтальмологии, кардиологии, неврологии и ангиологии.

Из-за сложности использования, дороговизны аппаратуры, наличия многих условий и ограничений в настоящее время они применяются редко. Однако трехмерное сканирование это эхография будущего .

Доплерэхография

Принцип доплерэхографии заключается в том, что частота ультразвукового сигнала при отражении от движущегося объекта изменяется пропорционально его скорости и зависит от частоты ультразвука и угла между направлением распространения ультразвука и направлением потока. Этот метод с успехом применяется в кардиологии.

Метод представляет интерес и для внутренней медицины в связи с его возможностями давать достоверную информацию о состоянии кровеносных сосудов внутренних органов без введения контрастных веществ в организм.

Чаще используется в комплексном обследовании больных с подозрением на портальную гипертензию на ранних ее стадиях, при определении степени выраженности нарушений портального кровообращения, выяснении уровня и причины блокады в системе воротной вены, а также для изучения изменения портального кровотока у больных с циррозом печени при администрировании медикаментозных препаратов (бетаблокаторов, ингибиторов АПФ и др.).

Все приборы оснащены ультразвуковыми датчиками двух типов: электромеханическими и электронными. Оба типа датчиков, но чаще электронные, имеют модификации для использования в различных областях медицины при обследовании взрослых и детей.


В классическом варианте реального масштаба времени применяются 4 метода электронного сканирования: секторное, линейное, конвексное и трапециедальное, каждый из которых характеризуется специфическими особенностями в отношении поля наблюдения. Исследователь может выбрать метод сканирования в зависимости от стоящей перед ним задачи и места локации.

Секторное сканирование

Преимущества:

— большое поле зрения при исследовании глубоких участков.

Область применения:

— краниологические исследования новорожденных через большой родничок;

— кардиологические исследования;

— общие абдоминальные исследования органов малого таза (особенно в гинекологии и при исследовании простаты), органов ретроперитонеальной системы.

Линейное сканирование

Преимущества:

— большое поле зрения при исследовании неглубоких участков тела;

— высокая разрешающая способность при исследовании глубоких участков тела благодаря использованию многоэлементного датчика;

Область применения:

— поверхностные структуры;

— кардиология;

— исследование органов малого таза и паранефральной области;

— в акушерстве.

Конвексное сканирование

Преимущества:

— небольшая площадь контакта с поверхностью тела пациента;

— большое поле наблюдения при исследовании глубоких участков.

Область применения:

— общие абдоминальные исследования.

Трапециедальное сканирование

Преимущества:

— большое поле наблюдения при исследовании близко к поверхности тела и глубоко расположенных органов;

— легкая идентификация томографических срезов.

Область применения:

— общие абдоминальные исследования;

— акушерские и гинекологические.

Кроме общепринятых классических методов сканирования в конструкциях последних приборов применяются технологии, позволяющие качественно дополнить их.

Векторный формат сканирования

Преимущества:

— при ограниченном доступе и сканировании из межреберья обеспечивает акустические характеристики п р и минимальной апертуре датчика. Векторный формат визуализации дает более широкий обзор в ближнем и дальнем поле.

Область применения такая же, как при секторном сканировании.

Сканирование в режиме выбора зоны увеличения

Это особое сканирование выбранной оператором зоны интереса для повышения акустического информационного содержания изображения в двухмерном и цветном доплеровском режиме. Выбранная зона интереса отображается с полным использованием акустических и растровых линий. Повышение качества изображения выражается в оптимальной плотности линий и пикселей, повышенном разрешении, повышении частоты кадров и увеличении изображения.

При обычном участке остается прежняя акустическая информация, а при обычном формате выбора зоны увеличения RES достигается увеличение изображения с повышенным разрешением и большой диагностической информацией.

Визуализация Мульти-Герц

Широкополосные пьезоэлектрические материалы обеспечивают современным датчикам возможность работать в широком диапазоне частот; представляют возможность выбора конкретной частоты из широкой полосы частот, имеющихся в датчиках, сохраняя при этом однородность изображения. Эта технология позволяет менять частоту датчика одним лишь нажатием кнопки, не тратя время на замену датчика. А это означает, что один датчик эквивалентен двум или трем частным характеристикам, что повышает ценность и клиническую разносторонность датчиков («Acuson», «Simens»).

Нужная ультразвуковая информация в последних инструкциях приборов может быть заморожена в разных режимах: B-mode, 2B-mode, 3D, В+В mode, 4B-mode, M-mode и регистрироваться при помощи принтера на специальной бумаге, на компьютерной кассете или видеоленте с компьютерной обработкой информации.

Ультразвуковая визуализация органов и систем человеческого организма непрерывно совершенствуется, постоянно открываются новые горизонты и возможности, однако правильная интерпретация полученной информации всегда будет зависеть от уровня клинической подготовки врача-исследователя.

В связи с этим я часто вспоминаю разговор с представителем фирмы «Aloca», приежавшим к нам сдать в эксплуатацию первый прибор в реальном масштабе времени «Aloca» SSD 202 D (1982 г.). На мое восхищение тем, что в Японии разработана технология ультразвукового прибора с компьютерной обработкой изображения он ответил так: «Компьютер — это хорошо, но если другой компьютер (показывая на голову) плохо работает, то тот компьютер ничего не стоит».

Скорость распространения ультразвука в бетоне колеблется от 2800 до 4800 м/с в зависимости от его структуры и прочности (табл. 2.2.2).

Таблица 2.2.2

Материал ρ, г/смЗ v п p , м/с
Сталь 7.8
Дуралюминий 2.7
Медь 8.9
Оргстекло 1.18
Стекло 3.2
Воздух 1.29x10 -3
Вода 1.00
Масло трансф. 0.895
Парафин 0.9
Резина 0.9
Гранит 2.7
Мрамор 2.6
Бетон (более 30 суток) 2.3-2.45 2800-4800
Кирпич:
силикатный 1.6-2.5 1480-3000
глиняный 1.2-2.4 1320-2800
Раствор:
цементный 1.8-2.2 1930-3000
известковый 1.5-2.1 1870-2300

Измерение такой скорости на относительно малых участках (в среднем 0.1-1 м) является сравнительно сложной технической задачей, которая может быть решена только при высоком уровне развития радиоэлектроники. Из всех существующих методов измерения скорости распространения ультразвука, с точки зрения возможности их применения для испытания строительных материалов, можно выделить следующие:

Метод акустического интерферометра;

Резонансный метод;

Метод бегущей волны;

Импульсный метод.

Для измерения скорости ультразвука в бетоне наибольшее распространение получил импульсный метод. Он основан на многократной посылке в бетон коротких ультразвуковых импульсов с частотой следования 30-60 Гц и измерении времени распространения этих импульсов на определенном расстоянии, называемой базой прозвучивания, т.е.

Следовательно, чтобы определить скорость ультразвука необходимо измерить расстояние, пройденное импульсом (база прозвучивания), и время, за которое ультразвук распространяется от места излучения до приема. Базу прозвучивания можно измерить любым прибором с точностью до 0.1мм. Время распространения ультразвука в большинстве современных приборов измеряется путем заполнения высокочастотными (до 10 МГц) счетными импульсами электронных ворот, начало которых соответствует моменту излучения импульса, а конец - моменту прихода его в приемник. Упрощенная функциональная схема такого прибора приведена на рис. 2.2.49.

Схема работает следующим образом. Задающий генератор 1 вырабатывает электрические импульсы с частотой от 30 до 50 Гц в зависимости от конструкции прибора и запускает высоковольтный генератор 2, который вырабатывает короткие электрические импульсы с амплитудой 100 В. Эти импульсы поступают в излучатель, в котором, используя пьезоэффект, преобразуются в пачку (от 5 до 15 шт.) механических колебаний с частотой 60-100 кГц и вводятся через акустическую смазку в контролируемое изделие. В это же время открываются электронные ворота, которые заполняются счетными импульсами, и срабатывает блок развертки, начинается движение электронного луча по экрану электронно­лучевой трубки (ЭЛТ).

Рис. 2.2.49. Упрощенная функциональная схема ультразвукового прибора:

1 - задающий генератор; 2 - генератор высоковольтных электрических импульсов; 3 - излучатель ультразвуковых импульсов; 4 - контролируемое изделие; 5 - приемник; 6 - усилитель; 7 - генератор формирования ворот; 8 - генератор счетных импульсов; 9 - блок развертки; 10 - индикатор; 11 - процессор; 12 - блок ввода коффициентов; 13 - цифровой индикатор значений t,V,R

Головная волна пачки ультразвуковых механических колебаний, пройдя через контролируемое изделие длиной L, при этом затратив время t, попадает в приемник 5, в котором преобразуется в пачку электрических импульсов.

Пришедшая пачка импульсов усиливается в усилителе 6 и попадает в блок вертикальной развертки для визуального контроля на экране ЭЛТ, а первым импульсом этой пачки закрываются ворота, прекратив доступ счетных импульсов. Таким образом, электронные ворота были открыты для счетных импульсов с момента излучения ультразвуковых колебаний до момента прихода их в приемник, т.е. время t. Далее счетчик считает количество счетных импульсов, которые заполнили ворота, и результат выдается на индикатор 13.

В некоторых современных приборах, таких как «Пульсар-1.1», имеются процессор и блок ввода коэффициентов, с помощью которых решается аналитическое уравнение зависимости "скорость-прочность", а на табло цифровой индикации выдаются время t, скорость V и прочность бетона R.

Для измерения скорости распространения ультразвука в бетоне и других строительных материалах в 80-е годы серийно выпускались ультразвуковые приборы УКБ-1М, УК-10П, УК-10ПМ, УК-10ПМС, УК-12П, УФ-90ПЦ, Бетон-5, которые себя хорошо зарекомендовали.

На рис. 2.2.50 приведен общий вид прибора УК-10ПМС.

Рис. 2.2.50. Ультразвуковой прибор УК-10ПМС

Факторы, влияющие на скорость распространения ультразвука в бетоне

Все материалы в природе можно разделить на две большие группы», относительно однородные и с большой степенью неоднородности или гетерогенные. К относительно однородным можно отнести такие материалы, как стекло, дистиллированная вода и другие материалы с постоянной для нормальных условий плотностью и отсутствием воздушных включений. Для них скорость распространения ультразвука в нормальных условиях практически постоянна. В неоднородных материалах, к которым относится большая часть строительных материалов, в том числе и бетон, внутреннее строение, взаимодействие микрочастиц и крупных составляющих элементов непостоянно как по объему, так и по времени. В их структуру входят микро - и макропоры, трещины, которые могут быть сухими или наполнеными водой.

Непостоянным является и взаимное расположение крупных и мелких частиц. Все это приводит к тому, что плотность и скорость распространения в них ультразвука непостоянны и колеблются в больших пределах. В табл. 2.2.2 приведены значения плотности ρ и скорости распространения ультразвука V для некоторых материалов.

Далее рассмотрим, каким образом влияют изменения таких параметров бетона, как прочность, состав и вид крупного заполнителя, количество цемента, влажность, температура и наличие арматуры на скорость распространения ультразвука в бетоне. Эти знания необходимы для объективной оценки возможности контроля прочности бетона ультразвуковым методом, а также для исключения ряда погрешностей при контроле, связанных с изменением указанных факторов

Влияние прочности бетона

Экспериментальные исследования показывают, что с повышением прочности бетона скорость ультразвука увеличивается.

Это объясняется тем, что значение скорости, так же как и значение прочности, зависит от условия внутриструктурных связей.

Как видно из графика (рис. 2.2.51), зависимость "скорость-прочность" для бетонов различного состава непостоянная, из чего следует, что на данную зависимость, кроме прочности, влияют и другие факторы.

Рис. 2.2.51. Зависимость между скоростью ультразвука V и прочностью R c для бетонов различных составов

К сожалению, некоторые факторы влияют на скорость ультразвука в большей степени, чем прочность, что является одним из серьезных недостатков ультразвукового метода.

Если принять бетон постоянного состава, а прочность изменять путем принятия различного В/Ц, то влияние других факторов окажется постоянным, и скорость ультразвука будет изменяется только от прочности бетона. В данном случае зависимость "скорость-прочность" станет более определенной (рис. 2.2.52).

Рис. 2.2.52. Зависимость "скорость-прочность" для постоянного состава бетона, полученная на заводе ЖБИ №1 г.Самары

Влияние вида и марки цемента

Сравнивая результаты испытаний бетонов на обыкновенном портландцементе и на других цементах, можно сделать вывод, что минералогический состав мало влияет на зависимость "скорость-прочность". Основное влияние оказывает содержание трехкальциевого силиката и тонкость помола цемента. Более важным фактором, влияющим на зависимость "скорость-прочность", является расход цемента на 1 м 3 бетона, т.е. его дозировка. С увеличением количества цемента в бетоне скорость ультразвука возрастает медленнее, чем механическая прочность бетона.

Это объясняется тем, что ультразвук при прохождении через бетон распространяется как по крупному заполнителю, так и по растворной части, соединяющей гранулы заполнителя, и его скорость в большей степени зависит от скорости распространения в крупном заполнителе. Однако прочность бетона в основном зависит от прочности растворной составляющей. Влияние количества цемента на прочность бетона и скорость ультразвука приведено на рис. 2.2.53.

Рис. 2.2.53. Влияние дозировки цемента на зависимость

"скорость-прочность"

1- 400 кг/м 3 ; 2 - 350 кг/м 3 ; 3 - 300 кг/м 3 ; 4 - 250 кг/м 3 ; 5 - 200 кг/м 3

Влияние водоцементного отношения

С уменьшением В/Ц увеличиваются плотность и прочность бетона соответственно повышается скорость ультразвука. При увеличении В/Ц наблюдается обратная зависимость. Следовательно, изменение В/Ц не вносит существенных отклонений в установленную зависимость "скорость-прочность. Поэтому при построении градуировочных графиков для изменения прочности бетона рекомендуется применять различное В/Ц.

Влияние вида и количества крупного заполнителя

Вид и количество крупного заполнителя оказывают существенное влияние на изменение зависимости "скорость-прочность". Скорость ультразвука в заполнителе, особенно в таких как кварц, базальт, твердый известняк, гранит, значительно больше скорости распространения его в бетоне.

Вид и количество крупного заполнителя влияют и на прочность бетона. Обычно принято считать, что чем прочнее заполнитель, тем выше прочность бетона. Но иногда приходится сталкиваться с таким явлением, когда применение менее прочного щебня, но с шероховатой поверхностью позволяет получить бетон с более высоким значением Re, чем при использовании прочного гравия, но с гладкой поверхностью

При незначительном изменении расхода щебня прочность бетона изменяется незначительно. Вместе с тем такое изменение количества крупного заполнителя оказывает большое влияние на скорость ультразвука.

По мере насыщения бетона щебнем значение скорости ультразвука увеличивается. Вид и количество крупного заполнителя влияют на связь "скорость - прочность" больше, чем остальные факторы (рис. 2.2.54 – 2.2.56)

Рис. 2.2.54. Влияние наличия крупного заполнителя на зависимость "скорость-прочность":

1 - цементный камень; 2 - бетон с заполнителем крупностью до 30 мм

Рис. 2.2.55. Зависимость "скорость-прочность" для бетонов с различной крупностью заполнителей: 1-1 мм; 2-3 мм; 3-7 мм; 4-30 мм

Рис. 2.2.56. Зависимость "скорость- прочность" для бетонов с заполнителем из:

1-песчаника; 2-известняка; 3-гранита; 4-базальта

Из графиков видно, что увеличение количества щебня на единицу объема бетона или повышение скорости ультразвука в нем приводит к увеличению скорости ультразвука в бетоне более интенсивно, чем прочность.

Влияние влажности и температуры

Влажность бетона неоднозначно влияет на его прочность и скорость ультразвука. С повышением влажности бетона, предел прочности при сжатии уменьшается за счет изменения межкристаллических связей, но скорость ультразвука возрастает, поскольку воздушные поры и микротрещины заполняются водой, а скорость в воде больше, чем в воздухе.

Температура бетона в диапазоне 5-40° С практически не влияет на прочность и скорость, но повышение температуры затвердевшего бетона за пределы указанного диапазона приводит к уменьшению его прочности и скорости вследствие увеличения внутренних микротрещин.

При отрицательной температуре скорость ультразвука повышается за счет превращения несвязанной воды в лед. Поэтому определять прочность бетона ультразвуковым методом при отрицательной температуре не рекомендуется.

Распространение ультразвука в бетоне

Бетон по своей структуре является гетерогенным материалом, в состав которого входят растворная часть и крупный заполнитель. Растворная часть, в свою очередь, представляет собой затвердевший цементный камень с включением частиц кварцевого песка.

В зависимости от назначения бетона и его прочностных характеристик соотношение между цементом, песком, щебнем и водой бывает различным. Кроме обеспечения прочности, состав бетона зависит от технологии изготовления железобетонных изделий. Например, при кассетной технологии производства необходима большая пластичность бетонной смеси, что достигается повышенным расходом цемента и воды. В этом случае увеличивается растворная часть бетона.

В случае стендовой технологии, особенно при немедленной распалубке, используются жесткие смеси с пониженным расходом цемента.

Относительный объем крупного заполнителя в этом случае увеличивается. Следовательно, при одних и тех же прочностных характеристиках бетона его состав может изменяться в больших пределах. На структурообразование бетона влияет технология изготовления изделий: качество перемешивания бетонной смеси, ее транспортировка, уплотнение, термовлажностная обработка во время твердения. Из этого следует, что на свойство затвердевшего бетона оказывает влияние большое количество факторов, причем влияние неоднозначное и носит случайный характер. Этим объясняется высокая степень неоднородности бетона как по составу, так и по его свойствам. Неоднородность и различные свойства бетона отражаются и на его акустических характеристиках.

В настоящее время, несмотря на многочисленные попытки, еще не разработана единая схема и теория распространения ультразвука через бетон, что объясняется) в первую очередь, наличием указанных выше многочисленных факторов, которые по-разному влияют на прочностные и акустические свойства бетона. Такое положение усугубляется и тем, что еще не разработана общая теория распространения ультразвуковых колебаний через материал с высокой степенью неоднородности. Только поэтому скорость ультразвука в бетоне определяется как для однородного материала по формуле

где L - путь, пройденный ультразвуком, м (база);

t - время, затраченное на прохождение данного пути, мкс.

Рассмотрим более подробно схему распространения импульсного ультразвука через бетон как через неоднородный материал. Но вначале ограничим область, в которой будут справедливы наши рассуждения, тем, что рассмотрим наиболее распространенный на заводах ЖБИ и стройках состав бетонной смеси, состоящей из цемента, речного песка, крупного заполнителя и воды. При этом будем считать, что прочность крупного заполнителя выше, чем прочность бетона. Это справедливо при использовании в качестве крупного заполнителя известняка, мрамора, гранита, доломита и других пород с прочностью порядка 40 МПа. Условно примем, что затвердевший бетон состоит из двух компонентов: относительно однородной растворной части с плотностью ρ и скоростью V и крупного заполнителя с ρ и V .

С учетом отмеченных допущений и ограничений затвердевший бетон можно рассматривать как твердую среду с акустическим импедансом:

Рассмотрим схему распространения головной ультразвуковой волны от излучателя 1 к приемнику 2 через затвердевший бетон толщиной L (рис. 2.2.57).

Рис. 2.2.57. Схема распространения головной ультразвуковой волны

в бетоне:

1 - излучатель; 2 - приемник; 3 - контактный слой; 4 - распространение волны в гранулах; 5 - распространение волны в растворной части

Головная ультразвуковая волна от излучателя 1 в первую очередь попадает в контактный слой 3, расположенный между излучающей поверхностью и бетоном. Для прохождения через контактный слой ультразвуковой волны он должен быть заполнен проводящей жидкостью или смазкой, в качестве которой чаще всего используется технический вазелин. Пройдя через контактный слой (за время t 0), ультразвуковая волна частично отражается в обратном направлении, а остальная часть войдет в бетон. Чем тоньше контактный слой по сравнению с длиной волны, тем меньшая часть волны отразится.

Войдя в толщу бетона, головная волна начнет распространяться в растворной части бетона на площади, соответствующей диаметру излучателя. Пройдя определенное расстояние Δl 1 , через время Δt 1 головная волна на определенной площади встретит одну или несколько гранул крупного заполнителя, частично от них отразится, а большая часть войдет в гранулы и начнет в них распространяться. Между гранулами волна будет продолжать распространяться по растворной части.

Учитывая принятое условие, что скорость ультразвука в материале крупного заполнителя больше, чем в растворной части, расстояние d, равное усредненному значению диаметра щебня, первой пройдет волна, которая распространялась через гранулы со скоростью V 2 , а волна, прошедшая через растворную часть, будет запаздывать.

Пройдя через первые гранулы крупного заполнителя, волна подойдет к границе раздела с растворной частью, частично отразится, а частично войдет в нее. При этом гранулы, через которые прошла головная волна, в дальнейшем можно рассматривать как элементарные сферические источники излучения ультразвуковой волны в растворную часть бетона, к которой можно применить принцип Гюйгенса.

Пройдя по раствору минимальное расстояние между соседними гранулами, головная волна войдет в них и начнет по ним распространяться, превращая их в очередные элементарные источники. Таким образом, через время t, пройдя всю толщу бетона L и второй контактный слой 3, головная волна попадет в приемник 2, где преобразуется в электрический сигнал.

Из рассмотренной схемы следует, что головная волна от излучателя 1 к приемнику 2 распространяется по пути, проходящему через гранулы крупного заполнителя и растворную часть, соединяющую эти гранулы, причем этот путь определяется из условия минимума затраченного времени t.

Отсюда время t равно

где - время, затраченное на прохождение растворной части, соединяющей гранулы;

Время, затраченное на прохождение через гранулы. Пройденный ультразвуком путь L равен

где: - общий путь, пройденный головной волной через растворную часть;

Общий путь, пройденный головной волной через гранулы.

Полное расстояние L, которое пройдет головная волна, может быть больше геометрического расстояния между излучателем и приемником, поскольку волна распространяется по пути максимальной скорости, а не по минимальному геометрическому расстоянию.

Время, затраченное ультразвуком на прохождение через контактные слои, необходимо вычитать из общего измеренного времени.

Волны, которые следуют за головной, также распространяются по пути максимальной скорости, но при своем движении будут встречать отраженные волны от границ раздела гранул крупного заполнителя и растворной части. Если диаметр гранул окажется равным длине волны или ее половине, то может возникнуть внутри гранулы акустический резонанс. Эффект интерференции и резонанса можно наблюдать при спектральном анализе пачки ультразвуковых волн, прошедших через бетон с различной крупностью заполнителя.

Рассмотренная выше схема распространения головной волны импульсного ультразвука справедлива только для бетонов с указанными в начале раздела свойствами, т.е. механическая прочность и скорость распространения ультразвука в материале, из которого получены гранулы крупного заполнителя, превышают прочность и скорость в растворной части бетона. Такими свойствами обладает большинство бетонов, применяемых на заводах ЖБИ и строительных площадках, в которых используется щебень из известняка, мрамора, гранита. Для керамзитобетона, пенобетона, бетона с туфовым заполнителем схема распространения ультразвука может быть другой.

Справедливость рассмотренной схемы подтверждается экспериментами. Так, из рис. 2.2.54 видно, что при добавлении к цементной части определенного количества щебня скорость ультразвука повышается при незначительном увеличении (а иногда и уменьшении) прочности бетона.

На рис. 2.2.56 заметно, что с повышением скорости ультразвука в материале крупного заполнителя скорость его в бетоне возраcтает.

Увеличение скорости в бетоне с более крупным заполнителем (рис. 2.2.55) также объясняется данной схемой, поскольку с увеличением диаметра удлиняется путь прохождения ультразвука через материал заполнителя.

Предложенная схема распространения ультразвука позволит объективно оценить возможности ультразвукового метода при дефектоскопии и контроле прочности бетона.

13. Аку́стика (от греч. ἀκούω (аку́о) - слышу) - наука о звуке, изучающая физическую природу звука и проблемы, связанные с его возникновением, распространением, восприятием и воздействием. Акустика является одним из направлений физики (механики), исследующих упругие колебания и волны от самых низких (условно от 0 Гц) до высоких частот.

Акустика является междисциплинарной наукой, использующей для решения своих проблем широкий круг дисциплин: математику, физику, психологию, архитектуру, электронику, биологию, медицину, гигиену, теорию музыки и другие.

Иногда (в обиходе) под акустикой понимают также акустическую систему - электрическое устройство, предназначенное для преобразования тока переменной частоты в звуковые колебания при помощи электро-акустического преобразования. Также термин акустика применим для обозначения колебательных свойств, связанных с качеством распространения звука в какой-либо системе или каком-либо помещении, например, «хорошая акустика концертного зала».

Термин «акустика» (фр. acoustique ) был введён в 1701 году Ж. Совёром .

Тон в лингвистике - использование высоты звука для смыслоразличения в рамках слов/морфем. Тон следует отличать от интонации, то есть изменения высоты тона на протяжении сравнительно большого речевого отрезка (высказывания или предложения). Различные тоновые единицы, имеющие смыслоразличительную функцию, могут называться тонемами (по аналогии с фонемой).

Тон, как и интонация, фонация и ударение, относится к супрасегментным, или просодическим, признакам. Носителями тона чаще всего являются гласные, но встречаются языки, где в этой роли могут выступать и согласные, чаще всего сонанты.

Тоновым, или тональным, называется язык, в котором каждый слог произносится с определённым тоном. Разновидностью тоновых языков являются также языки с музыкальным ударением, в которых один или несколько слогов в слове являются выделенными, и разные типы выделения противопоставляются тоновыми признаками.

Тоновые противопоставления могут сочетаться с фонационными (таковы многие языки Юго-Восточной Азии).

Шум - беспорядочные колебания различной физической природы, отличающиеся сложностью временной и спектральной структуры. Первоначально слово шум относилось исключительно к звуковым колебаниям, однако в современной науке оно было распространено и на другие виды колебаний (радио-, электричество).

Шум - совокупность апериодических звуков различной интенсивности и частоты. С физиологической точки зрения шум - это всякий неблагоприятный воспринимаемый звук.

Акустический, звуковой удар - это звук ассоциируемый с ударными волнами, созданными сверхзвуковым полётом самолёта. Акустический удар создаёт огромное количество звуковой энергии, похожей на взрыв. Звук удара хлыста - наглядный пример акустического удара. Это момент, когда самолёт преодолевает звуковой барьер, то, пробивая собственную звуковую волну, он создаёт мощный мгновенный большой силы звук, распространяющийся в стороны. Но на самом летящем самолёте он не слышен, поскольку звук от него "отстал". Звук напоминает выстрел сверхмощной пушки, сотрясающий весь небосвод и поэтому сверхзвуковым самолётам рекомендовано переходить на сверхзвук подальше от городов, чтобы не беспокоить и не пугать граждан

Физические параметры звука

Колебательная скорость измеряется в м/с или см/с. В энергетическом отношении реальные колебательные системы характеризуются изменением энергии вследствие частичной её затраты на работу против сил трения и излучение в окружающее пространство. В упругой среде колебания постепенно затухают. Для характеристики затухающих колебаний используются коэффициент затухания (S), логарифмический декремент (D) и добротность (Q).

Коэффициент затухания отражает быстроту убывания амплитуды с течением времени. Если обозначить время, в течение которого амплитуда уменьшается в е = 2,718 раза, через , то:

Уменьшение амплитуды за один цикл характеризуется логарифмическим декрементом. Логарифмический декремент равен отношению периода колебаний ко времени затухания :

Если на колебательную систему с потерями действовать периодической силой, то возникают вынужденные колебания , характер которых в той или иной мере повторяет изменения внешней силы. Частота вынужденных колебаний не зависит от параметров колебательной системы. Напротив, амплитуда зависит от массы, механического сопротивления и гибкости системы. Такое явление, когда амплитуда колебательной скорости достигает максимального значения, называется механическим резонансом. При этом частота вынужденных колебаний совпадает с частотой собственных незатухающих колебаний механической системы.

При частотах воздействия, значительно меньших резонансной, внешняя гармоническая сила уравновешивается практически только силой упругости. При частотах возбуждения, близких к резонансной, главную роль играют силы трения. При условии, когда частота внешнего воздействия значительно больше резонансной, поведение колебательной системы зависит от силы инерции или массы.

Свойство среды проводить акустическую энергию, в том числе и ультразвуковую, характеризуется акустическим сопротивлением. Акустическое сопротивление среды выражается отношением звуковой плотности к объёмной скорости ультразвуковых волн. Удельное акустическое сопротивление среды устанавливается соотношением амплитуды звукового давления в среде к амплитуде колебательной скорости её частиц. Чем больше акустическое сопротивление, тем выше степень сжатия и разрежения среды при данной амплитуде колебания частиц среды. Численно, удельное акустическое сопротивление среды (Z) находится как произведение плотности среды () на скорость (с) распространения в ней ультразвуковых волн.

Удельное акустическое сопротивление измеряется в паскаль -секунда на метр (Па·с/м) или дин с/см³ (СГС); 1 Па·с/м = 10 −1 дин с/см³.

Значение удельного акустического сопротивления среды часто выражается в г/с·см², причём 1 г/с·см² = 1 дин с/см³. Акустическое сопротивление среды определяется поглощением, преломлением и отражением ультразвуковых волн.

Звуковое или акустическое давление в среде представляет собой разность между мгновенным значением давления в данной точке среды при наличии звуковых колебаний и статического давления в той же точке при их отсутствии. Иными словами, звуковое давление есть переменное давление в среде, обусловленное акустическими колебаниями. Максимальное значение переменного акустического давления (амплитуда давления) может быть рассчитано через амплитуду колебания частиц:

где Р - максимальное акустическое давление (амплитуда давления);

На расстоянии в половину длины волны (λ/2) амплитудное значение давления из положительного становится отрицательным, то есть разница давлений в двух точках, отстоящих друг от друга на λ/2 пути распространения волны, равна 2Р.

Для выражения звукового давления в единицах СИ используется Паскаль (Па), равный давлению в один ньютон на метр квадратный (Н/м²). Звуковое давление в системе СГС измеряется в дин/см²; 1 дин/см² = 10 −1 Па = 10 −1 Н/м². Наряду с указанными единицами часто пользуются внесистемными единицами давления - атмосфера (атм) и техническая атмосфера (ат), при этом 1 ат = 0,98·10 6 дин/см² = 0,98·10 5 Н/м². Иногда применяется единица, называемая баром или микробаром (акустическим баром); 1 бар = 10 6 дин/см².

Давление, оказываемое на частицы среды при распространении волны, является результатом действия упругих и инерционных сил. Последние вызываются ускорениями, величина которых также растёт в течение периода от нуля до максимума (амплитудное значение ускорения). Кроме того, в течение периода ускорение меняет свой знак.

Максимальные значения величин ускорения и давления, возникающие в среде при прохождении в ней ультразвуковых волн, для данной частицы не совпадают во времени. В момент, когда перепад ускорения достигает своего максимума, перепад давления становится равным нулю. Амплитудное значение ускорения (а) определяется выражением:

Если бегущие ультразвуковые волны наталкиваются на препятствие, оно испытывает не только переменное давление, но и постоянное. Возникающие при прохождении ультразвуковых волн участки сгущения и разряжения среды создают добавочные изменения давления в среде по отношению к окружающему её внешнему давлению. Такое добавочное внешнее давление носит название давления излучения (радиационного давления). Оно служит причиной того, что при переходе ультразвуковых волн через границу жидкости с воздухом образуются фонтанчики жидкости и происходит отрыв отдельных капелек от поверхности. Этот механизм нашёл применение в образовании аэрозолей лекарственных веществ. Радиационное давление часто используется при измерении мощности ультразвуковых колебаний в специальных измерителях - ультразвуковых весах.

Интенсивность звука (абсолютная) - величина, равная отношению потока звуковой энергии dP через поверхность, перпендикулярную направлению распространения звука , к площади dS этой поверхности:

Единица измерения - ватт на квадратный метр (Вт/м 2).

Для плоской волны интенсивность звука может быть выражена через амплитуду звукового давления p 0 и колебательную скорость v :

,

где Z S - среды.

Громкость звука - субъективная характеристика, котрорая зависит от амплитуды, а значит от энергии звуковой волны. Чем больше энергия, тем больше давление звуковой волны.

Уровень интенсивности - это объективная характеристика звука.

Интенсивность - отношение падающей на поверхности звуковой мощности к площади этой поверхности. Измеряется в Вт/м 2 (ватт на кв. метр).

Уровень интенсивности определяет во сколько раз интенсивность звука больше, чем минимальная интенсивность, воспринимаемая человеческим ухом.

Поскольку минимальная чувствительность, воспринимаемая человеком 10 -12 Вт/м 2 отличается от максимальной, вызывающей болевые ощущения - 10 13 Вт/м 2 , на много порядков, то используется логарифм отношения интенсивности звука к минимальной интенсивности.

Здесь k - уровень интенсивности, I - интенсивность звука, I 0 - минимальная интенсивность звука, воспринимаемая человеком или пороговая интенсивность.

Смысл логарифма в данной формуле - если интенсивность I изменяется на порядок, то уровень интенсивности при этом изменяется на единицу .

Единица измерения уровня интенсивности - 1 Б (Белл). 1 Белл - уровень интенсивности, которая в 10 раз превышает пороговую.

На практике уровень интенсивности измеряетсяв дБ (дециБеллах). Тогда формула для вычисления уровня интенсивности переписывается так:

Звуково́е давле́ние - переменное избыточное давление , возникающее в упругой среде при прохождении через неё звуковой волны . Единица измерения - паскаль (Па).

Мгновенное значение звукового давления в точке среды изменяется как со временем, так и при переходе к другим точкам среды, поэтому практический интерес представляет среднеквадратичное значение данной величины, связанное с интенсивностью звука :

где - интенсивность звука , - звуковое давление, - удельное акустическое сопротивление среды, - усреднение по времени.

При рассмотрении периодических колебаний иногда используют амплитуду звукового давления; так, для синусоидальной волны

где - амплитуда звукового давления.

Уровень звукового давления (англ. SPL, Sound Pressure Level ) - измеренное по относительной шкале значение звукового давления, отнесённое к опорному давлению = 20 мкПа, соответствующему порогу слышимости синусоидальной звуковой волны частотой 1 кГц:

дБ.

Гро́мкость зву́ка - субъективное восприятие силы звука (абсолютная величина слухового ощущения). Громкость главным образом зависит от звукового давления , амплитуды и частоты звуковых колебаний. Также на громкость звука влияют его спектральный состав, локализация в пространстве, тембр, длительность воздействия звуковых колебаний и другие факторы (см. , ).

Единицей абсолютной шкалы громкости является фон . Громкость в 1 фон - это громкость непрерывного чистого синусоидального тона частотой 1 кГц , создающего звуковое давление 2 мПа .

Уровень громкости звука - относительная величина. Она выражается в фонах и численно равна уровню звукового давления децибелах - дБ), создаваемого синусоидальным тоном частотой 1 кГц такой же громкости, как и измеряемый звук (равногромким данному звуку).

Зависимость уровня громкости от звукового давления и частоты

На рисунке справа изображено семейство кривых равной громкости, называемых также изофонами . Они представляют собой графики стандартизированных (международный стандарт ISO 226 ) зависимостей уровня звукового давления от частоты при заданном уровне громкости. С помощью этой диаграммы можно определить уровень громкости чистого тона какой-либо частоты, зная уровень создаваемого им звукового давления.

Средства звукового наблюдения

Например, если синусоидальная волна частотой 100 Гц создаёт звуковое давление уровнем 60 дБ, то, проведя прямые, соответствующие этим значениям на диаграмме, находим на их пересечении изофону, соответствующую уровню громкости 50 фон. Это значит, что данный звук имеет уровень громкости 50 фон.

Изофона «0 фон», обозначенная пунктиром, характеризует порог слышимости звуков разной частоты для нормального слуха .

На практике часто представляет интерес не уровень громкости, выраженный в фонах, а величина, показывающая, во сколько данный звук громче другого. Представляет интерес также вопрос о том, как складываются громкости двух разных тонов. Так, если имеются два тона разных частот с уровнем 70 фон каждый, то это не значит, что суммарный уровень громкости будет равен 140 фон.

Зависимость громкости от уровня звукового давления (и интенсивности звука ) является сугубо нелинейной

кривой, она имеет логарифмический характер. При увеличении уровня звукового давления на 10 дБ громкость звука возрастёт в 2 раза. Это значит, что уровням громкости 40, 50 и 60 фон соответствуют громкости 1, 2 и 4 сона.

физические основы звуковых методов исследования в клинике

Звук, как и свет, является источником информации, и в этом его главное значение. Звуки природы, речь окружающих нас людей, шум работающих машин многое сообщают нам. Чтобы представить значение звука для человека, достаточно временно лишить себя возможности воспринимать звук – закрыть уши. Естественно, что звук может быть и источником информации о состоянии внутренних органов человека.

Распространенный звуковой метод диагностики заболеваний – аускультация (выслушивание). Для ау-скультации используют стетоскоп или фонендоскоп. Фонендоскоп состоит из полой капсулы с передающей звук мембраной, прикладываемой к телу больного, от нее идут резиновые трубки к уху врача. В полой капсуле возникает резонанс столба воздуха, вследствие чего усиливается звучание и улучшается ау-скультация. При аускультации легких выслушивают дыхательные шумы, разные хрипы, характерные для заболеваний. По изменению тонов сердца и появлению шумов можно судить о состоянии сердечной деятельности. Используя аускультацию, можно установить наличие перистальтики желудка и кишечника, прослушать сердцебиение плода.

Для одновременного выслушивания больного несколькими исследователями с учебной целью или при консилиуме используют систему, в которую входят микрофон, усилитель и громкоговоритель или несколько телефонов.

Длядиагностики состояния сердечной деятельности применяется метод, подобный аускультации и называемый фонокардиографией (ФКГ). Этот метод заклю16б чается в графической регистрации тонов и шумов сердца и их диагностической интерпретации. Запись фонокардиограммы производят с помощью фонокардиографа, состоящего из микрофона, усилителя, системы частотных фильтров и регистрирующего устройства.

Принципиально отличным от двух изложенных выше звуковых методов является перкуссия. При этом методе выслушивают звучание отдельных частей тела при их простукивании. Схематично тело человека можно представить как совокупность газонаполненных (легких), жидких (внутренние органы) и твердых (кость) объемов. При ударе по поверхности тела возникают колебания, частоты которых имеют широкий диапазон. Из этого диапазона одни колебания погаснут довольно быстро, другие же, совпадающие с собственными колебаниями пустот, усилятся и вследствие резонанса будут слышимы. Опытный врач по тону перкуторных звуков определяет состояние и расположение (тонографию) внутренних органов.

15. Инфразву́к (от лат. infra - ниже, под) - звуковые волны имеющие частоту ниже воспринимаемой человеческим ухом. Поскольку обычно человеческое ухо способно слышать звуки в диапазоне частот 16 - 20000 Гц, то за верхнюю границу частотного диапазона инфразвука обычно принимают 16 Гц. Нижняя же граница инфразвукового диапазона условно определена как 0,001 Гц. Практический интерес могут представлять колебания от десятых и даже сотых долей герц, то есть с периодами в десяток секунд.

Природа возникновения инфразвуковых колебаний такая же, как и у слышимого звука, поэтому инфразвук подчиняется тем же закономерностям, и для его описания используется такой же математический аппарат, как и для обычного слышимого звука (кроме понятий, связанных с уровнем звука). Инфразвук слабо поглощается средой, поэтому может распространяться на значительные расстояния от источника. Из-за очень большой длины волны ярко выражена дифракция.

Инфразвук, образующийся в море, называют одной из возможных причин нахождения судов, покинутых экипажем (см. Бермудский треугольник, Корабль-призрак).

Инфразвук. Действие инфразвука на биологические объекты.

Инфразвук - колебательные процессы с частотами ниже 20 Гц. Инфразвуки – не воспринимаются слухом человека.

Инфразвук оказывает неблагоприятное влияние на функциональное состояние ряда систем организма: усталость, головная боль, сонливость, раздражение и др.

Предполагается, что первичный механизм действия инфразвука на организм имеет резонансную природу.

Ультразвук, методы его получения. Физические характеристики и особенности распространения ультразвуковых волн. Взаимодействие ультразвука с веществом. Кавитация. Применение ультразвука: эхолокация, диспергирование, дефектоскопия, ультразвуковое резание.

Ультразвуком – (УЗ) называют механические колебания и волны, частоты которых более 20 кГц.

Для получения УЗ используется устройства, называемые УЗ – излучателем. Наибольшее распространение получили электромеханические излучатели, основанные на явление обратного пьезоэлектрического эффекта.

По своей физической природе Ультразвук представляет собой упруги волны и в этом он не отличается от звука . от 20 000 до миллиарда Гц. Принципиальной физической чертой звуковых колебаний является амплитуда волны, либо амплитуда смещения.

Ультразвук в газах и, в частности, в воздухе распространяется с большим затуханием. Жидкости и твёрдые тела (в особенности монокристаллы) представляют собой, как правило, хорошие проводники. Ультразвук, затухание, в которых значительно меньше. Так, например, в воде затухание Ультразвук при прочих равных условиях приблизительно в 1000 раз меньше, чем в воздухе.

Кавитация – сжатия и разрежения, создаваемые ультразвуком, приводят к образованию разрывов сплошности жидкости.

Применение ультразвука:

Эхолокация - способ, при помощи которого положение объекта определяется по времени задержки возвращений отражённой волны.

Диспергирование - Размельчение твердых веществ или жидкостей под действием ультразвуковых колебаний.

Дефектоскопия - поиск дефектов в материале изделия ультразвуковым методом, то есть путём излучения и принятия ультразвуковых колебаний, и дальнейшего анализа их амплитуды, времени прихода, формы и пр. с помощью специального оборудования - ультразвукового дефектоскопа .

Ультразвуковое резание - основано на сообщении режущему инструменту УЗ механических колебаний, что в значительной мере снижает усилие резания, себестоимость оборудования и повышает качество изготавливаемых изделий (нарезания резьб, сверления, точения, фрезерования). УЗ резание находит в медицине для рассечения биологических тканей.

Действие ультразвука на биологические объекты. Применение ультразвука для диагностики и для лечения. Ультразвуковая хирургия. Преимущества ультразвуковых методов.

Физические процессы, обусловленные воздействием УЗ, вызывают в биологических объектах следующие основные эффекты.

Микровибрации на клеточном и субклеточном уровне;

Разрушение биомакромолекул;

Перестройку и повреждение биологических мембран, изменение проницаемости мембран;

Тепловое действие;

Разрушение клеток и микроорганизмов.

Медико-биологические приложения ультразвука можно в основном разделить на два направления: методы диагностики и исследования и методы воздействия.

Метод диагностики:

1) относятся локационные методы и использованием главным образом импульсного излучения.

Z: энцефалография – определение опухолей и отека головного мозга, ультразвуковое кардиография – измерение размера сердца в динамике; в офтальмологии – ультразвуковая локация для определения размеров глазных сред. С помощью эффекта Доплера изучается характер движения сердечных клапанов, измеряется скорость кровотока.

2) К лечению относят ультразвуковая физиотерапия . Обычно на пациента воздействуют частотой 800 кГц.

Первичным механизмом ультразвуковой терапии являются механическое и тепловое действия на ткань.

При лечение таких заболеваний как астма, туберкулез и т.д. применяю аэрозоли различных лекарственных веществ полученным с помощью ультразвука.

При операциях ультразвук применяют как “ультразвуковой скальпель”, способный рассекать и мягкие и костные ткани. В настоящее время разработан новый метод “сваривания” поврежденных или трансплантируемых костных тканей с помощью ультразвука (ультразвуковой остеосинтез).

Главное преимущество ультразвука перед другими мутагенами (рентгеновские лучи, ультрафиолетовые лучи) заключается в том, что с ним чрезвычайно легко работать.

Эффект Доплера и его использование в медицине.

Эффектом Доплера называют изменение частоты волн, воспринимаемых наблюдателем (приемником волн), вследствие относительного движения источника волн и наблюдателя.

Эффект был впервые описан Кристианом Доплером в 1842 году.

Эффект Доплера используется для определения скорости кровотока, скорости движения клапанов и стенок сердца (доплеровская эхокардиография) и других органов.

Проявление эффекта Доплера широко используется в различных медицинских приборах, использующих, как правило, ультразвуковые волны в МГц диапазоне частот.

Например, отражённые от красных кровяных телец ультразвуковые волны можно использовать для определения скорости кровотока. Аналогичным образом этот метод можно применять для обнаружения движения грудной клетки зародыша, а также для дистанционного контроля за сердцебиениями.

16. Ультразву́к - упругие колебания с частотой за пределом слышимости для человека. Обычно ультразвуковым диапазоном считают частоты выше 18 000 герц.

Хотя о существовании ультразвука известно давно, его практическое использование достаточно молодо. В наше время ультразвук широко применяется в различных физических и технологических методах. Так, по скорости распространения звука в среде судят о её физических характеристиках. Измерения скорости на ультразвуковых частотах позволяет с весьма малыми погрешностями определять, например, адиабатические характеристики быстропротекающих процессов, значения удельной теплоемкости газов, упругие постоянные твердых тел.

Частота ультразвуковых колебаний, применяемых в промышленности и биологии, лежит в диапазоне порядка нескольких МГц. Такие колебания обычно создают с помощью пьезокерамических преобразователей из титанита бария. В тех случаях, когда основное значение имеет мощность ультразвуковых колебаний, обычно используются механические источники ультразвука. Первоначально все ультразвуковые волны получали механическим путем (камертоны, свистки, сирены).

В природе УЗ встречается как в качестве компонентов многих естественных шумов (в шуме ветра, водопада, дождя, в шуме гальки, перекатываемой морским прибоем, в звуках, сопровождающих грозовые разряды, и т. д.), так и среди звуков животного мира. Некоторые животные пользуются ультразвуковыми волнами для обнаружения препятствий, ориентировки в пространстве.

Излучатели ультразвука можно подразделить на две большие группы. К первой относятся излучатели-генераторы; колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока - струи газа или жидкости. Вторая группа излучателей - электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твердого тела, которое и излучает в окружающую среду акустические волны.

Физические свойства ультразвука

Применение ультразвука в медицинской диагностике связано с возможностью получения изображения внутренних органов и структур. Основой метода является взаимодействие ультразвука с тканями тела человека. Собственно получение изображения можно разделить на две части. Первая - излучение коротких ультразвуковых импульсов, направленное в исследуемые ткани и второе - формирование изображения на основе отраженных сигналов. Понимание принципа работы ультразвуковой диагностической установки, знание основ физики ультразвука и его взаимодействия с тканями тела человека помогут избежать механического, бездумного использования прибора и, следовательно, более грамотно подходить к процессу диагностики.

Звук - это механическая продольная волна, в которой колебания частиц находятся в той же плоскости, что и направление распространения энергии (рис. 1).

Рис. 1. Визуальное и графическое представление изменений давления и плотности в ультразвуковой волне.

Волна переносит энергию, но не материю. В отличие от электромагнитных волн (свет, радиоволны и т.д.) для распространения звука необходима среда - он не может распространяться в вакууме. Как и все волны, звук можно описать рядом параметров. Это частота, длина волны, скорость распространения в среде, период, амплитуда и интенсивность. Частота, период, амплитуда и интенсивность определяются источником звука, скорость распространения - средой, а длина волны - и источником звука и средой. Частота - это число полных колебаний (циклов) за период времени в 1 секунду (рис. 2).

Рис. 2. Частота ультразвуковой волны 2 цикла в 1 с = 2 Гц

Единицами измерения частоты являются герц (Гц) и мегагерц (МГц). Один герц - это одно колебание в секунду. Один мегагерц = 1000000 герц. Что же делает звук "ультра"? Это частота. Верхняя граница слышимого звука - 20000 Гц (20 килогерц (кГц)) - является нижней границей ультра­звукового диапазона. Ультра­звуковые локаторы летучих мышей работают в диапазоне 25÷500 кГц. В современных ультра­звуковых приборах для получения изображения используется ультразвук частотой от 2 МГц и выше. Период - это время, необходимое для получения одного полного цикла колебаний (рис. 3).

Рис. 3. Период ультразвуковой волны.

Единицами измерения периода являются секунда (с) и микросекунда (мксек). Одна микросекунда является одной миллионной долей секунды. Период (мксек) = 1/частота (МГц). Длина волны - это длина, которую занимает в пространстве одно колебание (рис. 4).

Рис. 4. Длина волны.

Единицы измерения - метр (м) и миллиметр (мм). Скорость распространения ультразвука - это скорость, с которой волна перемещается в среде. Единицами скорости распространения ультразвука являются метр в секунду (м/с) и миллиметр в микросекунду (мм/мксек). Скорость распространения ультразвука определяется плотностью и упругостью среды. Скорость распространения ультразвука увеличивается при увеличении упругости и уменьшении плотности среды. В таблице 2.1 представлены скорости распространения ультразвука в некоторых тканях тела человека.

Таблица 2.1. Скорость распространения ультразвука в мягких тканях

Ткань

Скорость распространения ультразвука в мм/мксек

Жировая ткань

Мягкие ткани (усреднение)

Вода (20°С)

Усредненная скорость распространения ультразвука в тканях тела человека составляет 1540 м/с - на эту скорость запрограммировано большинство ультразвуковых диагностических приборов. Скорость распространения ультразвука (С), частота (f) и длина волны (λ) связаны между собой следующим уравнением: С = f × λ. Так как в нашем случае скорость считается постоянной (1540 м/с), то оставшиеся две переменные f и λ связаны между собой обратно пропорциональной зависимостью. Чем выше частота, тем меньше длина волны и тем меньше размеры объектов, которые мы можем увидеть. Еще одним важным параметром среды является акустическое сопротивление (Z). Акустическое сопротивление - это произведение значения плотности среды и скорости распространения ультразвука. Сопротивление (Z) = плотность (р) × скорость распространения (С).

Для получения изображения в ультразвуковой диагностике используется не ультразвук, который излучается трансдьюсером непрерывно (постоянной волной), а ультразвук излучаемый в виде коротких импульсов (импульсный). Он генерируется при приложении к пьезоэлементу коротких электрических импульсов. Для характеристики импульсного ультразвука используются дополнительные параметры. Частота повторения импульсов - это число импульсов излучаемых в единицу времени (секунду). Частота повторения импульсов из меряете я в герцах (Гц) и килогерцах (кГц). Продолжительность импульса - это временная протяженность одного импульса (рис. 5).

Рис. 5. Продолжительность ультразвукового импульса.

Измеряется в секундах (с) и микросекундах (мксек). Фактор занятости - это часть времени, в которое происходит излучение (в форме импульсов) ультразвука. Пространственная протяженность импульса (ППИ) - это длина пространства, в котором размещается один ультразвуковой импульс (рис. 6).

Рис. 6. Пространственная протяженность импульса.

Для мягких тканей пространственная протяженность импульса (мм) равна произведению 1,54 (скорость распространения ультразвука в мм/мксек) и числа колебаний (циклов) в импульсе (n), отнесенному к частоте в МГц. Или ППИ = 1,54 × n/f. Уменьшения пространственной протяженности импульса можно достичь (а это очень важно для улучшения осевой разрешающей способности) за счет уменьшения числа колебаний в импульсе или увеличения частоты. Амплитуда ультразвуковой волны - это максимальное отклонение наблюдаемой физической переменной от среднего значения (рис. 7).

Рис. 7. Амплитуда ультразвуковой волны

Интенсивность ультразвука - это отношение мощности волны к площади, по которой распределяется ультразвуковой поток. Измеряется в ваттах на квадратный сантиметр (Вт/кв.см). При равной мощности излучения чем меньше площадь потока, тем выше интенсивность. Интенсивность также пропорциональна квадрату амплитуды. Так, если амплитуда удваивается, то интенсивность учетверяется. Интенсивность неоднородна как по площади потока, так и, в случае импульсного ультразвука, во времени.

При прохождении через любую среду будет наблюдаться уменьшение амплитуды и интенсивности ультразвукового сигнала, которое называется затуханием. Затухание ультразвукового сигнала вызывается поглощением, отражением и рассеиванием. Единицей затухания является децибел (дБ). Коэффициент затухания - это ослабление ультразвукового сигнала на единицу длины пути этого сигнала (дБ/см). Коэффициент затухания возрастает с увеличением частоты. Усредненные коэффициенты затухания в мягких тканях и уменьшение интенсивности эхосигнала в зависимости от частоты представлены в таблице 2.2.

Таблица 2.2. Усредненные коэффициенты затухания в мягких тканях

Частота, МГц

Усреднённый коэффициент затухания для мягких тканей, дБ/см

Уменьшение интенсивности по глубине

1 см (%)

10 см (%)

Ультразвук - упругая механическая продольная волна, частота которой превышает 20000Гц . В медицине применяется УЗ частотой 1-1,5МГц.

Ультразвуковая волна вследствие высокой её частоты распространяется в виде лучей (из-за малой длины УЗ-волны можно пренебречь её волновыми свойствами). Такие лучи можно сфокусировать с помощью специальных акустических линз и достигнуть, таким образом, большой интенсивности УЗ-волны. Кроме того, поскольку интенсивность волны пропорциональна квадрату частоты и амплитуды колебаний, то высокая частота УЗ-волны даже при малых её амплитудах предопределяет возможность получения УЗ-волн большой интенсивности.

Способы получения ультразвука :

1. магнитострикционный (получают ультразвук до 200кГц). Магнитострикция - это изменение формы и объёма ферромагнетика (железо, его сплавы с никелем) при помещении его в переменное магнитное поле. Переменное магнитное поле - это поле, вектор магнитной индукции которого изменяется во времени по гармоническому закону, т.е. изменение указанного параметра характеризуется определённой частотой. Это поле действует как вынуждающая сила, заставляющая стержень из железа сжиматься и растягиваться в зависимости от изменения величины магнитной индукции во времени. Частота сжатий и растяжений будет определяться частотой переменного магнитного поля. При этом в воздухе у концов стержня возникают деформации сжатия, которые распространяются в виде УЗ - волн.

Увеличения амплитуды УЗ-волн добиваются путём подбора такой частоты переменного магнитного поля, при которой наблюдается резонанс между собственными и вынужденными колебаниями стержня.

2. обратный пьезоэлектрический эффект (получают ультразвук более 200кГц). Пьезоэлектрики - вещества кристаллического строения, имеющие пьезоэлектрическую ось, то есть направление, в котором они легко деформируются (кварц, сегнетова соль, титанат бария и др.) Когда такие вещества помещают в переменное электрическое поле (по гармоническому закону колеблется напряжённость электрического поля), пьезоэлектрики начинают сжиматься и растягиваться вдоль пьезоэлектрической оси с частотой переменного электрического поля. При этом вокруг кристалла возникают механические возмущения - деформации сжатия и разряжения, которые распространяются в виде УЗ-волн. В достижении нужной амплитуды играют роль резонансные явления.

Эффект назван обратным, поскольку исторически раньше был открыт прямой пьезоэлектрический эффект - явление возникновения переменного электрического поля при деформации пьезоэлектриков.

Наличие прямого и обратного пьезоэлектрического эффекта очень важно для работы УЗ- диагностических приборов. Для того чтобы направить УЗ-волну на тело пациента, необходимо получить её, что делают с помощью обратного пьезоэлектрического эффекта. Для того чтобы зарегистрировать и визуализировать отражённую УЗ-волну, необходимо её превратить в электрическое поле, чего достигают с помощью прямого пьезоэлектрического эффекта.

Особенности распространения УЗ-волн

1) В однородной среде. При прохождении УЗ-волны интенсивностью I через слой вещества шириной её интенсивность уменьшается и становится равной I = I 0 ·e -αd , где I 0 - начальная интенсивность УЗ-волны; I - интенсивность волны после прохождения через слой вещества, d - ширина слоя вещества, - α коэффициент угасания волны.

Угасание УЗ-волны вызвано двумя процессами: рассеянием энергии в тканях (связано с клеточной неоднородностью органов) и её поглощением (связано с макромолекулярной структурой тканей). Значение коэффициента угасания - важный диагностический признак. Так, печень имеет малый коэффициент угасания УЗ-волн вследствие малого коэффициента рассеяния. При циррозе эта величина резко возрастает.

Поглощение тканями УЗ-волн - основа диагностики состояния внутренних органов по принципу трансмиссии - анализа интенсивности волны, прошедшей через тело пациента, и применения УЗ в терапии и хирургии.

2) На границе двух сред. При попадании УЗ-волны интенсивностью на границу раздела сред происходит отражение волны и поглощение волны.

Часть энергии, которая будет заключена в отражённой волне, зависит от соотношения акустических сопротивлений сред. Так на границе тело пациента- воздух отражается почти 100% энергии. Поэтому, чтобы УЗ-волна попала в тело пациента применяют специальные гели (цель - уменьшить перепад акустического сопротивления сред).

Отражение УЗ волны от неоднородностей и границ внутренних органов - основа диагностики их состояния по принципу эхолокации - анализа интенсивности отражённой УЗ - волны. УЗ - волна, направленная на тело пациента, называется зондирующим сигналом , а отражённая УЗ-волна - эхосигналом.

Отражение УЗ-волн также зависит от размера отражающих структур:

Если размер отражающих структур сопоставим с длинной УЗ-волны, то будет происходить дифракция волн, т.е. огибание волной структуры с последующим рассеянием энергии в тканях и формированием УЗ-тени. Это ограничивает разрешающую способность УЗ-диагностики;

Если размер отражающих структур больше длины УЗ-волны, то последняя будет отражаться, причём интенсивность эхосигнала будет зависеть от направления зондирующего сигнала, формы и размера отражающих структур. Существуют так называемые зеркальные структуры , амплитуда эхосигналов от которых имеет самые большие значения (кровеносные сосуды, полости, границы органов и тканей).

В целом, однако, интенсивность эхосигналов очень невелика, что требует для их регистрации очень чувствительной аппаратуры, но, с другой стороны, определяет проникновение УЗ-волн в более глубоколежащие внутренние структуры и способствует их визуализации.

Применение ультразвука в диагностике

С диагностической целью применяют УЗ-волны малой интенсивности, которые не вызывают биологических эффектов в тканях, - до 0,1 Вт на кв.см.

С помощью УЗ-датчика на основе обратного пьезоэлектрического эффекта получают УЗ зондирующий сигнал и принимают эхосигнал. Последний в датчике в результате прямого пьезоэлектрического эффекта преобразуется в переменное электрическое поле, что позволяет зарегистрировать, усилить и визуализировать эхосигналы с помощью электронной аппаратуры.

По способу регистрации и отражения на экране электронных приборов эхосигналов различают следующие режимы УЗ-сканирования:

- А-режим (amplitude mode). Эхосигналы, преобразованные в датчике в электрическое поле, вызывают вертикальное отклонение луча развёртки в форме пиков, амплитуда которых будет зависеть от интенсивности отражённой УЗ-волны, а местоположение на экране осциллографа - глубину залегания отражающей структуры в масштабе измерительного устройства. Примером использования А-режима в медицине является эхоэнцефалоскопия - методика УЗ-сканирования, используемая в неврологии и нейрохирургии для диагностики объёмных поражений головного мозга (гематом, опухолевых процессов и т.д.). Основные эхосигналы (максимальные по амплитуде) формируются при отражении от черепной коробки в месте расположения датчика, срединных структур, черепной коробки противоположной стороны. Смещение центрального пика в правую или левую сторону может указывать на наличие патологии соответственно левого или правого полушарий мозга.

- В-режим (brightness mode). Эхосигналы, преобразованные в датчике в электрическое поле, вызывают на экране свечение точек разной яркости: чем большее колебание напряжённости электрического поля (что, в свою очередь, зависит от интенсивности эхосигнала), тем более яркое и объёмное пятно образуется на экране измерительного прибора. Для реализации режима используют сложноустроенные датчики УЗ-волн, которые содержат множество элементов, излучающих зондирующие стимулы и преобразующих эхосигналы. Направление зондирующих сигналов также меняется. Электронная аппаратура накапливает данные исследования одного и того же участка тела, полученных с помощью всех элементов датчика и в разных направлениях, и, интегрируя их, формирует изображение исследуемого органа в реальном режиме времени в масштабе измерительного устройства. Таким образом можно получить двумерные эхотомограммы.

- М-режим (motion mode). Позволяет получать эхограммы подвижных структур организма. Как и при осуществлении А-режима, направление зондирующих сигналов остаётся неизменным на протяжении всего времени исследования, однако зондирование осуществляется многократно так, чтобы период формирования М- эхограммы превышал период движения исследуемых структур и период формирования А- эхограммы. Регистрируется изменение глубины залегания подвижной структуры во времени (перемещение луча измерительного устройства вдоль оси х ). Амплитуда эхосигналов отображается в виде пятен различной яркости (как в режиме В). При каждом последующем зондировании продольная эхограмма смещается на малую величину в направлении, перпендикулярном оси изображения глубины (времени). Чаще всего в клинике используется эхокардиография.

Взаимодействие ультразвука с веществом. Применение ультразвука в терапии и хирургии.

УЗ характеризуется следующими видами действия на вещество:

- механическое действие . Оно связано с деформацией микроструктуры вещества вследствие периодического сближения и отдаления составляющих вещество микрочастиц. Например, в жидкости УЗ-волна вызывает разрывы её целостности с образованием полостей - кавитаций. Это энергетически невыгодное состояние жидкостей, поэтому полости быстро закрываются с выделением большого количества энергии.

- тепловое действие . Связано с тем, что энергия, заключённая в УЗ-волне и выделяющаяся при закрытии кавитаций, частично рассеивается в тканях в виде тепла, что приводит к их нагреванию.

- физико-химическое действие . Проявляется в ионизации и диссоциации молекул веществ, ускорении химических реакций (например, окисления и восстановления) и т.д.

На комплексном действии механических, тепловых и физико-химических факторов основано биологическое действие УЗ . Это действие будет определяться интенсивностью УЗ-волны.

УЗ малой и средней интенсивности (соответственно 1,5 Вт на кв . см . и 3 Вт на кв.см ) вызывают в живых организмах позитивные эффекты, стимулирует протекание нормальных физиологических процессов. Это основа использования УЗ в физиотерапии. УЗ улучшает проницаемость клеточных мембран, активизирует все виды транспорта через мембрану, влияет на скорость протекания биохимических реакций.

Увеличение интенсивности УЗ-волны приводит к разрушающему его действию на клетки. Это используется для стерилизации медицинских помещений путём уничтожения ультразвуком вирусов и клеток бактерий и грибков.

УЗ высокой интенсивности широко используется в хирургии. Некоторые операции проводятся с помощью ультразвукового скальпеля. Они безболезненны, сопровождаются малыми кровотечениями, раны быстрее заживают, в том числе вследствие стерилизации раны УЗ.

Широкое использование имеет УЗ в ортопедии: для проведения некоторых операций на кости применяется УЗ-пилка , УЗ применяется для соединения костей между собой и скрепления с ними костных имплантантов.

Литотрипсия - методика разрушения камней в почках и жёлчном пузыре с помощью направленного действия УЗ волн большой интенсивности.

Эходоплерография

Эффект Доплера - изменение частоты волн, которые воспринимаются приёмником вследствие относительного движения источника волн и приёмника. Для вычисления частоты волн, которые воспринимаются приемником, пользуются формулой:

Где v приемн - частота волн, воспринимаемых приемником, v ист - частота волн, испускаемых источником, v 0 - скорость волны, u 0 - скорость движения приемника волн, u ист - скорость движения источника волн.

Верхние знаки в числителе и знаменателе характеризуют случаи приближения друг к другу источника и приёмника УЗ-волн, а нижние знаки - случаи отдаления источника и приёмника УЗ-волн.

Эходоплерография - методика исследования скорости кровотока и движения подвижных структур организма (сердце и сосуды), основанная на применении эффекта Доплера.

В мягкие ткани с помощью неподвижного датчика излучается УЗ-волна определённой частоты ν , после чего регистрируют эхосигналы, отражённые от подвижных элементов (главным образом, от эритроцитов крови) и имеющие вследствие эффекта Доплера частоту ν``.

Доплеровский эффект наблюдается дважды:

Сначала датчик является источником волн частотой ν, а эритроцит - приёмником. Вследствие движения эритроцит воспримет волну частотой ν`.

Эритроцит отразит попавшую на него УЗ-волну частотой ν`, но датчик, к которому вернётся эхосигнал, вследствие подвижности эритроцита воспримет его частотой ν``.

Диагностическим признаком является разность Δν = ν - ν`` , которая называется доплеровским сдвигом частоты . Эта разность зависит от скорости движения эритроцитов, т.е. и скорости кровотока в целом.

Доплеровский сдвиг частот находиться в звуковом диапазоне и может быть услышан опытным врачом с помощью специальных приспособлений. Существуют и более современные методы визуализации доплеровского сдвига частот.

1. Скорость распространения ультразвука зависит от температуры и давления в трубопроводе. Скорость ультразвука при различных значениях температуры воды и атмосферном давлении приведена в табл.Д.1.

Таблица Д.1

Александров А.А., Трахтенгерц М.С. Теплофизические свойства воды при атмосферном давлении. М. Издательство стандартов, 1977, 100с. (Государственная служба стандартных справочных данных. Сер. Монографии).

2. При использовании расходомера для измерения расхода и объема воды в системах водо и теплоснабжения скорость ультразвука определяется по данным табл. Д.2 методом линейной интерполяции по температуре и давлению в соответствии с формулой:

где c(t,P) – скорость ультразвука в жидкости, протекающей по трубопроводу, м/с;

c(t1) – табличное значение скорости ультразвука при температуре меньшей, чем измеренное, м/с;

c(t2) – табличное значение скорости ультразвука при температуре большей, чем измеренное, м/с;

c(P1) – табличное значение скорости ультразвука при давлении меньшем, чем измеренное, м/с;

c(P2) – табличное значение скорости ультразвука при давлении большем, чем измеренное, м/с;

t – температура воды в трубопроводе, ºС;

P – давление воды в трубопроводе, МПа;

t1, t2 – табличные значения температур, ºС;

P1, P2 – табличные значения давлений, МПа;

ПРИМЕЧАНИЕ.

1. Значения c(t1) и c(t2) определяются по данным табл. Д.1. Значения c(P1) и c(P2) определяется по данным табл. Д.2. при температуре, наиболее близкой к температуре воды в трубопроводе.

2. Измерения температуры и давления воды в трубопроводе должны выполняться с погрешностью не более ±0,5 ºС и ±0,5 МПа соответственно.

Таблица Д.2

Продолжение таблицы Д.2

Александров А.А., Ларкин Д.К. Экспериментальное определение скорости ультразвука в широком диапазоне температур и давлений. Журнал "Теплоэнергетика", №2, 1976, стр.75.

3. При отсутствии таблиц зависимости скорости ультразвука от температуры жидкости скорость ультразвука может определяться с помощью приспособления, изображенного на рис.Д.1. Непосредственно перед измерением скорости ультразвука корпус приспособления (скоба стальная) погружается в исследуемую жидкость, а толщиномер настраивается для измерения скорости ультразвука. Затем ультразвуковым толщиномером производиться непосредственное измерение скорости ультразвука.

Для измерения скорости ультразвука в жидкости возможно также применение прибора УС-12 ИМ (ЩО 2.048.045 ТО) или толщиномеров других типов.

Рис.Д.1. Приспособление для измерения скорости ультразвука в жидкости.



Рассказать друзьям