Какая ткань имеет базальную мембрану. Базальная мембрана. Строение базальной мембраны

💖 Нравится? Поделись с друзьями ссылкой

Базальная мембрана (розовый) под эндотелием сосудов и эпителием.

Базальная мембрана - тонкий бесклеточный слой, отделяющий соединительную ткань от эпителия или эндотелия . Базальная мембрана состоит из двух пластинок: светлой (лат. lamina lucida ) и тёмной (lamina densa ). Иногда к тёмной пластинке прилегает образование, называемое фиброретикулярной пластинкой (lamina fibroreticularis ).

Строение базальной мембраны

Базальная мембрана образуется при слиянии двух пластинок: базальной пластинки и ретикулярной пластинки (lamina reticularis ). Ретикулярная пластинка соединена с базальной пластинкой с помощью якорных фибрилл (коллаген типа VII) и микрофибрилл (фибриллин). Обе пластинки вместе называются базальной мембраной .

  • Светлая пластинка (lamina lucida/lamina rara ) - толщина 20-30 нм, светлый мелкозернистый слой, прилежит к плазмалемме базальной поверхности эпителиоцитов. От полудесмосом эпителиоцитов вглубь этой пластинки, пересекая её, направляются тонкие якорные филаменты. Содержит протеины , протеогликаны и антиген пузырчатки .
  • Темная (плотная) пластинка (lamina densa ) - толщина 50-60 нм, мелкозернистый или фибриллярный слой, расположен под светлой пластинкой, обращен в сторону соединительной ткани. В пластинку вплетаются якорные фибриллы, имеющие вид петель (образованы коллагеном VII типа), в который продеты коллагеновые фибриллы подлежащей соединительной ткани. Состав: коллаген IV, энтактин, гепарансульфат.
  • Ретикулярная (фиброретикулярная) пластинка (lamina reticularis ) - состоит из коллагеновых фибрилл и микроокружения соединительной ткани, связанных с якорными фибриллами (многие авторы не выделяют эту пластинку).

Тип контакта базальной мембраны с эпителием: полудесмосома - сходна по строению с десмосомой , но это соединение клеток с межклеточными структурами. Так в эпителиях линкерные гликопротеиды (интегрины) десмосомы взаимодействуют с белками базальной мембраны. Базальные мембраны делят на 2-слойные, 3-слойные, прерывистые, сплошные.

БМ прикрепляется к подлежащей ткани посредством фиброретикулярного слоя с помощью 3 механизмов в зависимости от положения Lamina lucida:

1)За счет взаимодействия фиброретикулярного слоя с коллагеном III.

2)За счет прикрепления БМ к эластической ткани посредством фибрилиновых микрофиламетов.

3) За счет полудесмосом и якорных фибрилл из коллагена VII типа.

Функции базальной мембраны

Химический состав базальной мембраны

  • Коллаген IV типа - содержит 1530 аминокислот в виде повторов, прерываемых 19 разделяющими участками. Первоначально белок организуется в антипараллельные димеры , которые стабилизируются дисульфидными связями. Димеры - основной компонент якорных фибрилл. Обеспечивает механическую прочность мембраны.
  • Гепарансульфат-протеогликан - участвует в клеточной адгезии , обладает ангигенными свойствами.
  • Энтактин - имеет палочковидную структуру и связывает между собой ламинины и коллаген IV типа в базальной мембране.
  • Гликопротеины (ламинин, фибронектин) - выполняют роль адгезивного субстрата, с помощью которого к мембране прикрепляются эпителиоциты.
Базальной мембраной называют электронноплотную структуру, связанную с базальной плазматической мембраной эпителиальной клетки, но лежащую вне клетки (рис. 1.3.1, 1.3.2).

Рис. 1.3.1. Светооптическое (а) и ультраструктурное (б) строение базальной мембраны: а - базальная мембрана (стрелка) эпителия почечных канальцев; б - ультраструктура базальной мембраны переднего эпителия роговой оболочки (стрелкой указаны якорные фибриллы)

Рис. 1.3.2. Схематическое изображение строения базальной мембраны и полудесмосомы (по В. Л. Быкову, 1999): 1 - светлая пластинка; 2 - плотная пластинка; 3 - ретикулярная пластинка; 4 - плазмолемма; 5 - полудесмосома; 6 - промежуточные филаменты; 7-якорные филаменты; 8-якорные фибриллы; 9 - коллагеновые фибриллы

Базальная мембрана может быть очень тонкой, в такой степени, что различать ее при световой микроскопии не представляется возможным. Встречаются и толстые мембраны. Толстые базальные мембраны получили название «стекловидные мембраны ». Существуют и базальные мембраны, видимые невооруженным глазом (капсула хрусталика).

Толстые базальные мембраны глаза представляют собой множество переплетающихся тонких базальных мембран, складывающихся в сложную многослойную структуру. Многослойные базальные мембраны могут быть составлены из толстых пластинок (периферия роговичного эпителия) или из тонких пластин (внутренняя пограничная мембрана ресничного эпителия).

Некоторые базальные мембраны (капсула хрусталика) обладают четкой волокнистой структурой.

Базальные мембраны прозрачны , обладают эластическими свойствами, способны к сокращению и сворачиваются при их разрушении (сворачивание десцеметовой оболочки после проникающего ранения роговицы).

Свободные поверхности толстых стекловидно подобных базальных мембран гладкие . По этой причине они интенсивно отражают свет. Этим объясняется блестящая поверхность десцеметовой оболочки, капсулы хрусталика, пограничной мембраны сетчатки.

Ультраструктурные исследования выявили, что базальные мембраны имеют довольно сложное строение. В них выделяют три слоя.

  • Первый слой - светлая пластинка (lamina lucida) . Этот слой имеет толщину 30-50 нм и прилежит к плазмолемме базальной поверхности эпителиоцитов. От полудесмосом эпителиоцитов в глубь этой пластинки направляются тонкие якорные филаменты. Светлая пластинка содержит гликопротеины (в том числе сульфатированный гликопротеин ламинин) и антиген пузырчатки (способствующие прикреплению базальной части эпителиоцитов), а также протеогликаны (гепарансульфат).
  • Второй слой - плотная пластинка (lamina densa) . Этот слой имеет толщину 50-60 нм и состоит из гранулярного и фибриллярного материала. Этот слой обращен в сторону эпителиальной ткани. В эту пластинку вплетаются якорные фибриллы, имеющие вид петель (образованы коллагеном VII типа), в которые продеты коллагеновые фибриллы подлежащей соединительной ткани. Плотная пластинка содержит коллаген IV типа, энтактин. гепарансульфат, коллаген V типа и адгезивный гликопротеин фибронектин.
  • Третья - ретикулярная пластинка (lamina reticularis) состоит из коллагеновых фибрилл соединительной ткани, связанных с якорными фибриллами. В ее состав входят фибриллы, образованные коллагенами I и III типов. Хотя, по мнению некоторых авторов, эту пластинку не следует относить к собственно базальной мембране, именно она образует основную массу той структуры, которая выявляется ШИК-реакцией или окраской солями серебра.

Функциями базальной мембраны являются

  • поддержание нормальной архитектоники, дифференциации и поляризации эпителия;
  • обеспечение плотной связи эпителиоцитов с подлежащей соединительной тканью;
  • избирательная фильтрация питательных веществ, обеспечение и регуляция роста эпителия по подлежащей соединительной ткани при его развитии и репаративной регенерации.

Нарушение строения и функции базальной мембраны приводит к развитию ряда заболеваний органов, включая глазное яблоко (диабетическая микроангиопатия).

Эпителии располагаются на базальных мембранах (пластинках), которые образуются в результате деятельности как клеток эпителия, так и подлежащей соединительной ткани. Базальная мембрана имеет толщину около 1 мкм и состоит из подэпителиальной электронно-прозрачной светлой пластинки толщиной 20-40 нм и темной пластинки толщиной 20-60 нм Светлая пластинка включает аморфное вещество, относительно бедное белками, но богатое ионами кальция. Темная пластинка имеет богатый белками аморфный матрикс, в который впаяны фибриллярные структуры (коллаген IV типа), обеспечивающие механическую прочность мембраны. В ее аморфном веществе содержатся сложные белки - гликопротеины, протеогликаны и углеводы (полисахариды) - гликозаминогликаны. Гликопротеины - фибронектин и ламинин - выполняют роль адгезивного субстрата, с помощью которого к мембране прикрепляются эпителиоциты. Важную роль при этом играют ионы кальция, обеспечивающие связь между адгезивными молекулами гликопротеинов базальной мембраны и полудесмосом эпителиоцитов. Кроме того, гликопротеины индуцируют пролиферацию и дифференцировку эпителиоцитов при регенерации эпителия. Протеогликаны и гликозаминогликаны создают упругость мембраны и характерный для нее отрицательный заряд, от которого зависит ее избирательная проницаемость для веществ, а также способность накапливать в условиях патологии многие ядовитые вещества (токсины), сосудоактивные амины и комплексы из антигенов и антител.

Функции базальной мембраны:

1. Поддержание нормальной архитектоники, дифференцировки и поляризации эпителия.

2. Обеспечение прочной связи эпителия с подлежащей соединительной тканью. К базальной мембране прикрепляются, с одной стороны, эпителиальные клетки (с помощью полудесмосом), с другой - коллагеновые волокна соединительной ткани (посредством якорных фибрилл).

3. Избирательная фильтрация питательных веществ, поступающих в эпителий (базальная мембрана играет роль молекулярного сита).



4. Обеспечение и регуляция роста и движения эпителия по подлежащей соединительной ткани при его развитии или репаративной регенерации.

В физиологических условиях базальная мембрана препятствует росту эпителия в сторону соединительной ткани. Это ингибирующее действие утрачивается при злокачественном росте, когда раковые клетки прорастают сквозь базальную мембрану в подлежащую соединительную ткань (инвазивный рост). Вместе с тем, прорастание базальной мембраны эпителиальными клетками выстилки сосудов (эндотелиоцитоми) наблюдается и в норме при новообразовании сосудов (ангиогенезе).

Цитохимическим маркером эпителиоцитов является белок цитокератин, образующий промежуточные филаменты. В различных видах эпителиев он имеет различные молекулярные формы. Известно более 20 форм этого белка. Иммуногистохимическое выявление этих форм цитокератина позволяет определить принадлежность исследуемого материала к тому или иному типу эпителиев, что имеет важное значение в диагностике опухолей.

КЛАССИФИКАЦИЯ ЭПИТЕЛИЕВ

Существует несколько классификаций эпителиев, в основу которых положены различные признаки: происхождение, строение, функция.

Онтофилогенетическая классификация, созданная российским гистологом Н.Г.Хлопиным. По этой классификации выделяется пять основных типов эпителия, развивающихся в эмбриогенезе из различных тканевых зачатков.

Эпендимоглиальный тип представлен специальным эпителием, выстилающим, например, полости мозга. Источником его образования является нервная трубка.

Таблица 11. Онтофилогенетическая классификация эпителия.

Наибольшее распространение получила морфологическая классификация, учитывающая главным образом, отношение клеток к базальной мембране и их форму.

Согласно этой классификации, различают две основные группы эпителиев:однослойные и многослойные. В однослойных эпителиях все клетки связаны с базальной мембраной, а в многослойных с ней непосредственно связан лишь один нижний слой клеток, а остальные вышележащие слои такой связи не имеют.

В соответствии с формой клеток, составляющих однослойный эпителий, последние подразделяются на плоские (сквамозные), кубические и призматические (столбчатые). В определении многослойных эпителиев учитывается лишь форма наружных слоев клеток. Например, эпителий роговицы - многослойный плоский, хотя нижние слои его состоят из клеток призматической и крылатой формы.

Однослойный эпителий может быть однорядным и многорядным. У однорядного эпителия все клетки имеют одинаковую форму - плоскую, кубическую или призматическую, их ядра лежат на одном уровне, т.е. в один ряд. Такой эпителий называют еще изоморфным (от греч. isos - равный). Однослойный эпителий, имеющий клетки различной формы и высоты, ядра которых лежат на разных уровнях, т.е. в несколько рядов, носит название многорядного, или псевдомногослойного (анизоморфного).

Многослойный эпителий бывает ороговевающим, неороговевающим и переходным. Эпителий, в котором протекают процессы ороговения, связанные с дифференцировкой клеток верхних слоев в плоские роговые чешуйки (в коже) называют многослойным плоским ороговевающим. При отсутствии ороговения (пищевод) эпителий является многослойным плоским неороговевающим.

Переходный эпителий выстилает органы, подверженные сильному растяжению, - мочевой пузырь, мочеточники и др. При изменении объема органа толщина и строение эпителия также изменяются.

Рис. 2.7. Морфологическая классификация эпителия

В настоящее время базальные мембраны выделены во многих органах. Возникла необходимость их морфофункционального определения и последующей классификации. Трудно допустить их полную однородность в различных тканевых структурах. К тому же еще неизвестны их генетическая обусловленность и функциональная детерминация. Мнения относительно происхождения базальных мембран чрезвычайно противоречивы. Возьмем для примера стенку капилляров. Имеется мнение, согласно которому базальная мембрана в ней у беспозвоночных возникает раньше эндотелия капилляров . С другой стороны, образование этой мембраны связывают с эндотелием.

Оказалось, что в построении базальной мембраны, помимо эндотелиоцитов, могут принимать участие перициты, гладкие мышечные клетки, клетки соединительной ткани и эпителия. Они либо синтезируют составные части мембраны, либо выделяют продукты, помогающие преобразованию прилегающего основного вещества соединительной ткани в базальную мембрану. Так или иначе, она возникает местно в результате биосинтетической деятельности окружающих ее клеток.

Будучи отделенной от эндотелия, базальная мембрана разрушается. Процесс ее распада ускоряют вазоактивные вещества. Структура и функции базальных мембран разных тканей в основном сходны. В связи с этим отметим формогенную роль базальной мембраны. Ее наличие создает реальные условия для распластывания клеток эндотелия, т. е. их активного прикрепления друг к другу и к подлежащему субстрату с последующим формированием непрерывного монослоя. Возможно, что этому в значительной степени способствует наличие в подлежащем субстрате фиброиектина 1 , ответственного за уплощенную, контактно-ингибировавшую форму эндотелиальных клеток .

С другой стороны, отсутствие базальной мембраны или ее прерывистое (окончатое) строение меняют условия прикрепления эндотелиоцитов, уровень их контактного торможения движений и, соответственно, их форму и характер связей с соседними клетками. Если учесть данные о наличии в эндотелиальных клетках сократительных белков, а также особенности микроокружения лимфатических капилляров, проявляющиеся, в частности, в отсутствии базальной мембраны, то появляется возможность более обоснованно подойти к обсуждению вопроса о временной (динамической) организации стенки инициальных лимфатических сосудов.

1 Гликопротеид, состоящий из двух субъединиц (их мол. масса достигает 22-25Х104 дальтон), которые связаны между собой поперечными дисульфидными мостиками .

«Микролимфология», В.В.Купирянов, Ю.И. Бородин

Базальная мембрана состоит из двух пластинок: светлой (lamina lucida) и тёмной (lamina densa). Иногда к тёмной пластинке прилегает образование, называемое фиброретикулярной пластинкой (lamina fibroreticularis).

Строение базальной мембраны

Базальная мембрана образуется при слиянии двух пластинок: базальной пластинки и ретикулярной пластинки (lamina reticularis). Ретикулярная пластинка соединена с базальной пластинкой с помощью якорных фибрилл (коллаген типа VII) и микрофибрилл (фибриллин). Обе пластинки вместе называются базальной мембраной.

  • Светлая пластинка (lamina lucida/lamina rara) - толщина 20-30 нм, светлый мелкозернистый слой, прилежит к плазмолемме базальной поверхности эпителиоцитов. От полудесмосом эпителиоцитов вглубь этой пластинки, пересекая её, направляются тонкие якорные филаменты. Содержит протеины, протеогликаны и антиген пузырчатки.
  • Темная (плотная) пластинка (lamina densa) - толщина 50-60 нм, мелкозернистый или фибриллярный слой, расположен под светлой пластинкой, обращен в сторону соединительной ткани. В пластинку вплетаются якорные фибриллы, имеющие вид петель (образованы коллагеном VII типа), в который продеты колагеновые фибриллы подлежащей соединительной ткани. Состав: коллаген IV, энтактин, гепарансульфат.
  • Ретикулярная (фиброретикулярная) пластинка (lamina reticularis) - состоит из коллагеновых фибрилл и микроокружения соединительной ткани, связанных с якорными фибриллами (многие авторы не выделяют эту пластинку).

Тип контакта базальной мембраны с эпителием: полудесмосома - сходна по строению с десмосомой, но это соединение клеток с межклеточными структурами. Так в эпителиях линкерные гликопротеиды (интегрины) десмосомы взаимодействуют с белками базальной мембраны. Базальные мембраны делят на:

  • двухслойные;
  • трехслойные:
  • прерывистые;
  • сплошные.

Функции базальной мембраны

  • Структурная;
  • Фильтрационная (в почечных клубочках);
  • Путь клеточных миграций;
  • Детерминирует полярность клеток;
  • Влияет на клеточный метаболизм;
  • Играет важную роль в регенерации тканей;
  • Морфогенетическая.

Химический состав базальной мембраны

  • Коллаген IV типа - содержит 1530 аминокислот в виде повторов, прерываемых 19-ю разделяющими участками. Первоначально белок организуется в антипараллельные димеры, которые стабилизируются дисульфидными связями. Димеры - основной компонент якорных фибрилл. Обеспечивает механическую прочность мембраны.
  • Гепарансульфат-протеогликан - участвует в клеточной адгезии, обладает ангигенными свойствами.
  • Энтактин - имеет палочковидную структуру и связывает между собой ламинины и коллаген IV типа в базальной мембране.
  • Гликопротеины (ламинин, фибронектин) - выполняют роль адгезивного субстрата, с помощью которого к мембране прикрепляются эпителиоциты.

Напишите отзыв о статье "Базальная мембрана"

Примечания

Ссылки

  • - humbio.ru
  • (англ.) - Важнейшие этапы в исследовании базальных мембран, сайт журнала Nature .
  • - http://www.pathogenesis.ru

Отрывок, характеризующий Базальная мембрана

Я подсела к ней на край деревянной перегородки и спросила, почему она такая грустная. Она долго не отвечала, а потом, наконец, прошептала сквозь слёзы:
– Меня мама бросила, а я её так люблю... Наверное, я была очень плохой и теперь она больше не вернётся.
Я растерялась. Да и что я могла ей сказать? Как объяснить? Я чувствовала, что Вероника находится со мной. Её боль буквально скрутила меня в твёрдый жгучий болевой ком и жгла так сильно, что стало тяжело дышать. Мне так хотелось им обеим помочь, что я решила – будь что будет, а, не попробовав, не уйду. Я обняла девчушку за её хрупкие плечики, и как можно мягче сказала:
– Твоя мама любит тебя больше всего на свете, Алина и она просила меня тебе передать, что она тебя никогда не бросала.
– Значит, она теперь живёт с тобой? – ощетинилась девчушка.
– Нет. Она живёт там, куда ни я, ни ты не можем пойти. Её земная жизнь здесь с нами, кончилась, и она теперь живёт в другом, очень красивом мире, из которого может тебя наблюдать. Но она видит, как ты страдаешь, и не может отсюда уйти. А здесь она уже находиться дольше тоже не может. Поэтому ей нужна твоя помощь. Ты хотела бы ей помочь?
– А откуда ты всё это знаешь? Почему она разговаривает с тобой?!.
Я чувствовала, что пока ещё она мне не верит и не хочет признавать во мне друга. И я никак не могла придумать, как же объяснить этой маленькой, нахохлившейся, несчастной девчушке, что существует «другой», далёкий мир, из которого, к сожалению, нет возврата сюда. И что её любимая мама говорит со мной не потому, что у неё есть выбор, а потому, что мне просто «посчастливилось» быть немножечко «другой», чем все остальные…
– Все люди разные, Алинушка, – начала я. – Одни имеют талант к рисованию, другие к пению, а вот у меня такой особый талант к разговору с теми, которые ушли из нашего с тобой мира уже навсегда. И твоя мама говорит со мной совсем не потому, что я ей нравлюсь, а потому, что я её услышала, когда больше никто её услышать не мог. И я очень рада, что хоть в чём-то могу ей помочь. Она тебя очень любит и очень страдает оттого, что ей пришлось уйти… Ей очень больно тебя оставлять, но это не её выбор. Ты помнишь, она тяжело и долго болела? – девочка кивнула. – Вот эта болезнь и заставила её покинуть вас. А теперь она должна уйти в свой новый мир, в котором она будет жить. И для этого она должна быть уверена, что ты знаешь, как она тебя любит.
Девочка грустно на меня посмотрела и тихо спросила:
– Она живёт теперь с ангелами?.. Папа мне говорил, что она теперь живёт в таком месте, где всё, как на открытках, что мне дарят на рождество. И там такие красивые крылатые ангелы... Почему она не взяла меня с собой?..
– Потому, что ты должна прожить свою жизнь здесь, милая, а потом ты тоже пойдёшь в тот же мир, где сейчас твоя мама.
Девочка засияла.
– Значит, там я её увижу? – радостно пролепетала она.
– Конечно, Алинушка. Поэтому ты должна быть всего лишь терпеливой девочкой и помочь твоей маме сейчас, если ты её так сильно любишь.
– Что я должна делать? – очень серьёзно спросила малышка.
– Всего лишь думать о ней и помнить её, потому, что она видит тебя. И если ты не будешь грустить, твоя мама наконец-то обретёт покой.
– Она и теперь видит меня?– спросила девочка и её губки начали предательски дёргаться.
– Да милая.
Она на какой-то миг замолчала, как бы собираясь внутри, а потом крепко сжала кулачки и тихо прошептала:
– Я буду очень хорошей, милая мамочка… ты иди… иди пожалуйста… Я тебя так люблю!..
Слёзы большими горошинами катились по её бледным щёчкам, но лицо было очень серьёзным и сосредоточенным… Жизнь впервые наносила ей свой жестокий удар и, казалось, будто эта маленькая, так глубоко раненная, девчушка вдруг совершенно по-взрослому что-то для себя осознала и теперь пыталась серьёзно и открыто это принять. Моё сердце разрывалось от жалости к этим двум несчастным и таким милым существам, но я, к сожалению, ничем больше не могла им помочь… Окружающий их мир был таким невероятно светлым и красивым, но для обоих это уже не мог больше быть их общий мир...

Рассказать друзьям